Energy Material Advances: From Fundamental Discoveries to Practical Applications

Read the full article

Journal profile

The Open Access journal Energy Material Advances, published in association with BIT, is an interdisciplinary platform for research in multiple fields from cutting-edge material to energy science.

Editorial board

Energy Material Advances’ editorial board is led by Feng Wu (Beijing Institute of Technology) and Jun Liu (University of Washington) and is comprised of experts who have made significant and well recognized contributions to the field.

Special issues

Energy Material Advances is now considering submissions for four special issues: 

 

• Perovskite Semiconductor Nanocrystals

 

• Na-Ion Batteries

 

• Multivalent Ion Batteries for Energy Storage

 

• Aqueous Flow Batteries for Stationary Energy Storage

Latest Articles

More articles
Research Article

Lattice Doping of Lanthanide Ions in Cs2AgInCl6 Nanocrystals Enabling Tunable Photoluminescence

Lead-free halide double perovskite Cs2AgInCl6 has become the research hotspot in the optoelectronic fields. It is a challenge to utilize the lattice doping by different lanthanide ions with rich and unique photoluminescence (PL) emissions for emerging photonic applications. Here, we successfully incorporated Dy3+, Sm3+, and Tb3+ ions into Cs2AgInCl6 nanocrystals (NCs) by the hot-injection method, bringing diverse PL emissions of yellowish, orange, and green light in Cs2AgInCl6:Ln3+ (Ln3+ = Dy3+, Sm3+, Tb3+). Moreover, benefiting from the energy transfer process, Sm3+ and Tb3+ ion-codoped Cs2AgInCl6 NCs achieved tunable emission from green to yellow orange and a fluorescent pattern from the as-prepared NC-hexane inks by spray coating was made to show its potential application in fluorescent signs and anticounterfeiting technology. This work indicates that lanthanide ions could endow Cs2AgInCl6 NCs the unique and tunable PL properties and stimulate the development of lead-free halide perovskite materials for new optoelectronic applications.

Research Article

Graphene-Based Coronal Hybrids for Enhanced Energy Storage

Functional materials with designer morphologies are anticipated to be the next generation materials for energy storage applications. In this manuscript, we have developed a holistic approach to enhance the surface area and hence the properties of nanostructures by synthesizing coronal nanohybrids of graphene. These nanohybrids provide distinctive advantages in terms of performance and stability over vertically stacked nanocomposites reported in literature. Various double hydroxide materials self-assembled as coronal lamellae on graphene shells have been synthesized and systematically studied. These coronal nanohybrids result in about a threefold increase in energy storage capacity as compared to their traditionally synthesized nanocomposite counterparts. The 3D graphene-based nanofibrils in the synthesized coronal nanohybrids provide mechanical support and connect the nodes of the double hydroxide lattices to inhibit restacking. Complex morphologies such as coronal nanostructures increase the interaction surface of the nanostructure significantly. Such an approach is also expected to bring a paradigm shift in development of functional materials for various applications such as sensors, energy storage, and catalysis.

Review Article

Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries

Developing post-lithium-ion battery technology featured with high raw material abundance and low cost is extremely important for the large-scale energy storage applications, especially for the metal-based battery systems such as aluminum, sodium, and magnesium ion batteries. However, their developments are still in early stages, and one of the major challenges is to explore a safe and reliable electrolyte. An ionic liquid-based electrolyte is attractive and promising for developing safe and nonflammable devices with wide temperature ranges owing to their several unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. In this review, the recent emerging limitations and strategies of ionic liquid-based electrolytes in the above battery systems are summarized. In particular, for aluminum-ion batteries, the interfacial reaction between ionic liquid-based electrolytes and the electrode, the mechanism of aluminum storage, and the optimization of electrolyte composition are fully discussed. Moreover, the strategies to solve the problems of electrolyte corrosion and battery system side reactions are also highlighted. Finally, a general conclusion and a perspective focusing on the current development limitations and directions of ionic liquid-based electrolytes are proposed along with an outlook. In order to develop novel high-performance ionic liquid electrolytes, we need in-depth understanding and research on their fundamentals, paving the way for designing next-generation products.

Research Article

FeCo Nanoparticle-Loaded Nutshell-Derived Porous Carbon as Sustainable Catalyst in Al-Air Batteries

Developing a high-performance ORR (oxygen reduction reaction) catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries. Herein, we report a catalyst, prepared by pyrolyzing the shell waste of peanut or pistachio, followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading. Large surface area (1246.4 m2 g-1) of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass. Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth, furnishing the resultant catalyst (FeCo/N-C-Pistachio) with higher content of N, Fe, and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart (FeCo/N-C-Peanut). The FeCo/N-C-Pistachio displays a promising onset potential of 0.93 V vs. RHE and a high saturating current density of 4.49 mA cm-2, suggesting its high ORR activity. An aluminium-air battery, with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode, delivers a power density of 99.7 mW cm-2 and a stable discharge voltage at 1.37 V over 5 h of operation. This high-performance, low-cost, and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries.

Research Article

Graphene Quantum Dots Open Up New Prospects for Interfacial Modifying in Graphene/Silicon Schottky Barrier Solar Cell

Graphene/silicon (Gr/Si) Schottky barrier solar cells (SBSCs) are attractive for harvesting solar energy and have been gaining grounds for its low-cost solution-processing. The interfacial barrier between graphene and silicon facilitates the reducing excessive carrier recombination while accelerating the separation processes of photo-generated carriers at the interface, which empowers the performance of Gr/Si SBSCs. However, the difficulty to control the interface thickness prevents its application. Here, we introduce the graphene oxide quantum dots (GOQDs) as a unique interfacial modulation species with tunable thickness by controlling the GOQDs particle size. The power conversion efficiency (PCE) of 13.67% for Gr/Si-based SBSC with outstanding stability in the air is obtained with the optimal barrier thickness (26 nm) and particle size (4.15 nm) of GOQDs. The GOQDs in Gr/Si-based SBSCs provide the extra band bending which further enhances the PCE for its photovoltaic applications.

Research Article

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells

Quasi-type II heterostructured nanocrystals (NCs) have been of particular interest due to their great potential for controlling the interplay of charge carriers. However, the lack of material choices for quasi-type II NCs restricts the accessible emission wavelength from red to near-infrared (NIR), which hinders their use in light-emitting applications that demand a wide range of visible colors. Herein, we demonstrate a new class of quasi-type II nanoemitters formulated in ZnSe/ZnSe1-XTeX/ZnSe seed/spherical quantum well/shell heterostructures (SQWs) whose emission wavelength ranges from blue to orange. In a given geometry, ZnSe1-XTeX emissive layers grown between the ZnSe seed and the shell layer are strained to fit into the surrounding media, and thus, the lattice mismatch between ZnSe1-XTeX and ZnSe is effectively alleviated. In addition, composition of the ZnSe1-XTeX emissive layer and the dimension of the ZnSe shell layer are engineered to tailor the distribution and energy of electron and hole wave functions. Benefitting from the capabilities to tune the charge carriers on demand and to form defect-free heterojunctions, ZnSe/ZnSe1-XTeX/ZnSe/ZnS NCs show near-unity photoluminescence quantum yield ( ) in a broad range of emission wavelengths (peak PL from 450 nm to 600 nm). Finally, we exemplify dichromatic white NC-based light-emitting diodes (NC-LEDs) employing the mixed layer of blue- and yellow-emitting ZnSe/ZnSe1-XTeX/ZnSe/ZnS SQW NCs.

Author guidelinesEditorial board