Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries

Read the full article

Journal profile

The Open Access journal Energy Material Advances, published in association with BIT, is an interdisciplinary platform for research in multiple fields from cutting-edge material to energy science.

Editorial board

Energy Material Advances’ editorial board is led by Feng Wu (Beijing Institute of Technology) and Jun Liu (University of Washington) and is comprised of experts who have made significant and well recognized contributions to the field.


The journal's Editorial Leadership is currently seeking professionals to join our board as Young Editors. Application deadline is December 31, 2021Click here for more information.


Check out the journal's collections of Special Issues.

Latest Articles

More articles
Review Article

Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Chemistry Perspective

High energy density lithium-ion (Li-ion) batteries are commonly used nowadays. Three decades’ worth of intense research has led to a good understanding on several aspects of such batteries. But, the issue of their safe storage and transportation is still not widely understood from a materials chemistry perspective. Current international regulations require Li-ion cells to be shipped at 30% SOC (State of Charge) or lower. In this article, the reasons behind this requirement for shipping Li-ion batteries are firstly reviewed and then compared with those of the analogous and recently commercialized sodium-ion (Na-ion) batteries. For such alkali-ion batteries, the safest state from their active materials viewpoint is at 0 V or zero energy, and this should be their ideal state for storage/shipping. However, a “fully discharged” Li-ion cell used most commonly, composed of graphite-based anode on copper current collector, is not actually at 0 V at its rated 0% SOC, contrary to what one might expect—the detailed mechanism behind the reason for this, namely, copper dissolution, and how it negatively affects cycling performance and cell safety, will be summarized herein. It will be shown that Na-ion cells, capable of using a lighter and cheaper aluminum current collector on the anode, can actually be safely discharged to 0 V (true 0% SOC) and beyond, even to reverse polarity (negative voltages). It is anticipated that this article spurs further research on the 0 V capability of Na-ion systems, with some suggestions for future studies provided.

Research Article

Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone

Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl2+ offers an energy density of more than 200 Wh/kg making it a viable solution for stationary electrical energy storage.

Research Article

A Computational Comparison of Ether and Ester Electrolyte Stability on a Ca Metal Anode

Ca-ion batteries (CIBs) have the potential to provide inexpensive energy storage, but their realization is impeded by the lack of suitable electrolytes. Motivated by recent experimental progress, we perform ab initio molecular dynamics simulations to investigate early decomposition reactions at the anode-electrolyte interface. By examining different combinations of solvent—tetrahydrofuran (THF) or ethylene carbonate (EC)—and salt—Ca(BH4)2, Ca(BF4)2, Ca(BCl4)2, and Ca(ClO4)2—we identify a variety of behavioral trends between electrolyte solutions. Next, we perform a separate trajectory with pure THF and gradually increased negative charge; despite an addition of -32, no THF decomposition is detected. Charge analysis reveals that in a reductive environment, THF distributes excess charge evenly across its hydrocarbon backbone, while EC concentrates charge on its ester oxygens and carbonyl carbon, resulting in decomposition. Graphs of charge vs. time for both solvents reveal that EC decomposition products can be reduced by up to five electrons, while those of THF are limited to a single electron. Ultimately, we find Ca(BH4)2 and THF to be the most stable solution investigated herein, corroborating experimental evidence of its suitability as a CIB electrolyte.

Research Article

Sodium-Ion Battery Anode Construction with SnPx Crystal Domain in Amorphous Phosphorus Matrix

The high-capacity phosphorus- (P-) based anode materials for sodium-ion batteries (NIBs) often face poor performance retentions owing to the low conductivity and large volume expansion. It is thus essential to buffer these problems by appropriately alloying with other elements such as tin (Sn) and constructing well-designed microstructures. Herein, a series of P-/Sn-based composites have been synthesized by the facile and low-cost one-step ball milling. Pair distribution function (PDF) has been employed as a hardcore quantitative technique to elucidate their structures combined with other techniques, suggesting the formation and ratios of Sn4P3 and Sn crystalline domains embedded inside an amorphous P/carbon matrix. The composite with the largest amount of Sn4P3 in the P/C matrix can deliver the most balanced electrochemical performance, with a capacity of 422.3 mA-h g−1 for 300 cycles at a current density of 1000 mA g−1. The reaction mechanism has been elucidated by 23Na and 31P solid-state nuclear magnetic resonance (NMR) investigations. The study sheds light on the rational design and concrete identification of P-/Sn-based amorphous-dominant composite materials for NIBs.

Research Article

Ion Coordination and Transport in Magnesium Polymer Electrolytes Based on Polyester-co-Polycarbonate

Magnesium-ion-conducting solid polymer electrolytes have been studied for rechargeable Mg metal batteries, one of the beyond-Li-ion systems. In this paper, magnesium polymer electrolytes with magnesium bis(trifluoromethane)sulfonimide (Mg(TFSI)2) salt in poly(ε-caprolactone-co-trimethylene carbonate) (PCL-PTMC) were investigated and compared with the poly(ethylene oxide) (PEO) analogs. Both thermal properties and vibrational spectroscopy indicated that the total ion conduction in the PEO electrolytes was dominated by the anion conduction due to strong polymer coordination with fully dissociated Mg2+. On the other hand, in PCL-PTMC electrolytes, there is relatively weaker polymer–cation coordination and increased anion–cation coordination. Sporadic Mg- and F-rich particles were observed on the Cu electrodes after polarization tests in Cu|Mg cells with PCL-PTMC electrolyte, suggesting that Mg was conducted in the ion complex form (MgxTFSIy) to the copper working electrode to be reduced which resulted in anion decomposition. However, the Mg metal deposition/stripping was not favorable with either Mg(TFSI)2 in PCL-PTMC or Mg(TFSI)2 in PEO, which inhibited quantitative analysis of magnesium conduction. A remaining challenge is thus to accurately assess transport numbers in these systems.

Research Article

Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes

In this work, we for the first time developed a novel lithium-containing crosslinked polymeric material, a lithicone that enables excellent protection effects over lithium (Li) metal anodes. This new lithicone was synthesized via an accurately controllable molecular layer deposition (MLD) process, in which lithium tert-butoxide (LTB) and glycerol (GL) were used as precursors. The resultant LiGL lithicone was analyzed using a suite of characterizations. Furthermore, we found that the LiGL thichicone could serve as an exceptional polymeric protection film over Li metal anodes. Our experimental data revealed that the Li electrodes coated by this LiGL lithicone can achieve a superior cycling stability, accounting for an extremely long cyclability of >13,600 Li-stripping/plating cycles and having no failures so far in Li/Li symmetric cells at a current density of 5 mA/cm2 and an areal capacity of 1 mAh/cm2. We found that, with a sufficient protection by this LiGL coating, Li electrodes could realize long-term stable cyclability with little formation of Li dendrites and solid electrolyte interphase. This novel LiGL represents a facile and effective solution to the existing issues of Li anodes and potentially paves a technically feasible route for lithium metal batteries.