Review Article | Open Access
Wenhan Zhou, Jiayi Chen, Pengxiang Bai, Shiying Guo, Shengli Zhang, Xiufeng Song, Li Tao, Haibo Zeng, "Two-Dimensional Pnictogen for Field-Effect Transistors", Research, vol. 2019, Article ID 1046329, 21 pages, 2019. https://doi.org/10.34133/2019/1046329
Two-Dimensional Pnictogen for Field-Effect Transistors
Abstract
Two-dimensional (2D) layered materials hold great promise for various future electronic and optoelectronic devices that traditional semiconductors cannot afford. 2D pnictogen, group-VA atomic sheet (including phosphorene, arsenene, antimonene, and bismuthene) is believed to be a competitive candidate for next-generation logic devices. This is due to their intriguing physical and chemical properties, such as tunable midrange bandgap and controllable stability. Since the first black phosphorus field-effect transistor (FET) demo in 2014, there has been abundant exciting research advancement on the fundamental properties, preparation methods, and related electronic applications of 2D pnictogen. Herein, we review the recent progress in both material and device aspects of 2D pnictogen FETs. This includes a brief survey on the crystal structure, electronic properties and synthesis, or growth experiments. With more device orientation, this review emphasizes experimental fabrication, performance enhancing approaches, and configuration engineering of 2D pnictogen FETs. At the end, this review outlines current challenges and prospects for 2D pnictogen FETs as a potential platform for novel nanoelectronics.
References
- K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at: Publisher Site | Google Scholar
- L. Tao, E. Cinquanta, D. Chiappe et al., “Silicene field-effect transistors operating at room temperature,” Nature Nanotechnology, vol. 10, no. 3, pp. 227–231, 2015. View at: Publisher Site | Google Scholar
- A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, “Silicene, silicene derivatives, and their device applications,” Chemical Society Reviews, vol. 47, no. 16, pp. 6370–6387, 2018. View at: Publisher Site | Google Scholar
- L. Li, Y. Yu, G. J. Ye et al., “Black phosphorus field-effect transistors,” Nature Nanotechnology, vol. 9, no. 5, pp. 372–377, 2014. View at: Publisher Site | Google Scholar
- H. Liu, A. T. Neal, Z. Zhu et al., “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, no. 4, pp. 4033–4041, 2014. View at: Publisher Site | Google Scholar
- Y. Wang, G. Qiu, R. Wang et al., “Field-effect transistors made from solution-grown two-dimensional tellurene,” Nature Electronics, vol. 1, no. 4, pp. 228–236, 2018. View at: Publisher Site | Google Scholar
- J. Yan, X. Zhang, Y. Pan et al., “Monolayer tellurene-metal contacts,” Journal of Materials Chemistry C, vol. 6, no. 23, pp. 6153–6163, 2018. View at: Publisher Site | Google Scholar
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, vol. 6, no. 3, pp. 147–150, 2011. View at: Publisher Site | Google Scholar
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699–712, 2012. View at: Publisher Site | Google Scholar
- K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nature Materials, vol. 3, no. 6, pp. 404–409, 2004. View at: Publisher Site | Google Scholar
- L. Song, L. Ci, H. Lu et al., “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Letters, vol. 10, no. 8, pp. 3209–3215, 2010. View at: Publisher Site | Google Scholar
- W. Zhou, S. Guo, S. Zhang et al., “Unusual electronic transitions in two-dimensional layered Sn Sb2 Te4 driven by electronic state rehybridization,” Physical Review Applied, vol. 11, no. 6, article 064045, 2019. View at: Publisher Site | Google Scholar
- S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angewandte Chemie International Edition, vol. 54, no. 10, pp. 3112–3115, 2015. View at: Publisher Site | Google Scholar
- S. Zhang, M. Xie, F. Li et al., “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angewandte Chemie International Edition, vol. 55, no. 5, pp. 1666–1669, 2016. View at: Publisher Site | Google Scholar
- E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Physical Review B, vol. 94, no. 1, article 014115, 2016. View at: Publisher Site | Google Scholar
- M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Advanced Materials, vol. 29, no. 21, article 1605299, 2017. View at: Publisher Site | Google Scholar
- J. Sturala, Z. Sofer, and M. Pumera, “Chemistry of layered pnictogens: phosphorus, arsenic, antimony, and bismuth,” Angewandte Chemie, vol. 131, no. 23, pp. 7631–7637, 2019. View at: Publisher Site | Google Scholar
- R. Hultgren, N. S. Gingrich, and B. E. Warren, “The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus,” The Journal of Chemical Physics, vol. 3, no. 6, pp. 351–355, 1935. View at: Publisher Site | Google Scholar
- R. W. Keyes, “The electrical properties of black phosphorus,” Physical Review, vol. 92, no. 3, pp. 580–584, 1953. View at: Publisher Site | Google Scholar
- D. Warschauer, “Electrical and optical properties of crystalline black phosphorus,” Journal of Applied Physics, vol. 34, no. 7, pp. 1853–1860, 1963. View at: Publisher Site | Google Scholar
- J. C. Jamieson, “Crystal structures adopted by black phosphorus at high pressures,” Science, vol. 139, no. 3561, pp. 1291-1292, 1963. View at: Publisher Site | Google Scholar
- S. Zhang, S. Guo, Z. Chen et al., “Recent progress in 2D group-VA semiconductors: from theory to experiment,” Chemical Society Reviews, vol. 47, no. 3, pp. 982–1021, 2018. View at: Publisher Site | Google Scholar
- J. H. Xu, E. G. Wang, C. S. Ting, and W. P. Su, “Tight-binding theory of the electronic structures for rhombohedral semimetals,” Physical Review B, vol. 48, no. 23, pp. 17271–17279, 1993. View at: Publisher Site | Google Scholar
- G. N. Greaves, S. R. Elliott, and E. A. Davis, “Amorphous arsenic,” Advances in Physics, vol. 28, no. 1, pp. 49–141, 1979. View at: Publisher Site | Google Scholar
- Z. Zhu and D. Tománek, “Semiconducting layered blue phosphorus: a computational study,” Physical Review Letters, vol. 112, no. 17, article 176802, 2014. View at: Publisher Site | Google Scholar
- M. Wu, H. Fu, L. Zhou, K. Yao, and X. C. Zeng, “Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family,” Nano Letters, vol. 15, no. 5, pp. 3557–3562, 2015. View at: Publisher Site | Google Scholar
- Z. Zhuo, X. Wu, and J. Yang, “Two-dimensional phosphorus porous polymorphs with tunable band gaps,” Journal of the American Chemical Society, vol. 138, no. 22, pp. 7091–7098, 2016. View at: Publisher Site | Google Scholar
- J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” Journal of Chemical Physics, vol. 118, no. 18, pp. 8207–8215, 2003. View at: Publisher Site | Google Scholar
- J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nature Communications, vol. 5, no. 1, article 4475, 2014. View at: Publisher Site | Google Scholar
- L. Hedin, “New method for calculating the one-particle Green’s function with application to the electron-gas problem,” Physical Review, vol. 139, no. 3A, pp. A796–A823, 1965. View at: Publisher Site | Google Scholar
- M. Shishkin and G. Kresse, “Implementation and performance of the frequency-dependent GW method within the PAW framework,” Physical Review B, vol. 74, no. 3, article 035101, 2006. View at: Publisher Site | Google Scholar
- L. Cheng, H. Liu, X. Tan et al., “Thermoelectric properties of a monolayer bismuth,” The Journal of Physical Chemistry C, vol. 118, no. 2, pp. 904–910, 2014. View at: Publisher Site | Google Scholar
- F. Ersan, E. Aktürk, and S. Ciraci, “Stable single-layer structure of group-V elements,” Physical Review B, vol. 94, no. 24, article 245417, 2016. View at: Publisher Site | Google Scholar
- Z. Luo, J. Maassen, Y. Deng et al., “Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus,” Nature Communications, vol. 6, no. 1, article 8572, 2015. View at: Publisher Site | Google Scholar
- X. Wang, A. M. Jones, K. L. Seyler et al., “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nature Nanotechnology, vol. 10, no. 6, pp. 517–521, 2015. View at: Publisher Site | Google Scholar
- J. D. Wood, S. A. Wells, D. Jariwala et al., “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Letters, vol. 14, no. 12, pp. 6964–6970, 2014. View at: Publisher Site | Google Scholar
- Y. Anugrah, M. C. Robbins, P. A. Crowell, and S. J. Koester, “Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene,” Applied Physics Letters, vol. 106, no. 10, article 103108, 2015. View at: Publisher Site | Google Scholar
- V. Tayari, N. Hemsworth, I. Fakih et al., “Two-dimensional magnetotransport in a black phosphorus naked quantum well,” Nature Communications, vol. 6, no. 1, article 7702, 2015. View at: Publisher Site | Google Scholar
- A. Favron, E. Gaufrès, F. Fossard et al., “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nature Materials, vol. 14, no. 8, pp. 826–832, 2015. View at: Publisher Site | Google Scholar
- Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano, vol. 9, no. 3, pp. 3192–3198, 2015. View at: Publisher Site | Google Scholar
- P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel et al., “Mechanical isolation of highly stable antimonene under ambient conditions,” Advanced Materials, vol. 28, no. 30, pp. 6332–6336, 2016. View at: Publisher Site | Google Scholar
- Y. Chen, C. Chen, R. Kealhofer et al., “Black arsenic: a layered semiconductor with extreme in-plane anisotropy,” Advanced Materials, vol. 30, no. 30, article 1800754, 2018. View at: Publisher Site | Google Scholar
- J. Ji, X. Song, J. Liu et al., “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nature Communications, vol. 7, no. 1, article 13352, 2016. View at: Publisher Site | Google Scholar
- H. A. Chen, H. Sun, C. R. Wu et al., “Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure,” ACS Applied Materials & Interfaces, vol. 10, no. 17, pp. 15058–15064, 2018. View at: Publisher Site | Google Scholar
- Y. Shao, Z. L. Liu, C. Cheng et al., “Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene,” Nano Letters, vol. 18, no. 3, pp. 2133–2139, 2018. View at: Publisher Site | Google Scholar
- M. Fortin-Deschênes, O. Waller, T. O. Menteş et al., “Synthesis of antimonene on germanium,” Nano Letters, vol. 17, no. 8, pp. 4970–4975, 2017. View at: Publisher Site | Google Scholar
- M. Fortin-Deschênes, R. M. Jacobberger, C. A. Deslauriers et al., “Dynamics of antimonene–graphene van der Waals growth,” Advanced Materials, vol. 31, no. 21, article 1900569, 2019. View at: Publisher Site | Google Scholar
- T. Niu, W. Zhou, D. Zhou et al., “Modulating epitaxial atomic structure of antimonene through interface design,” Advanced Materials, vol. 31, no. 29, article 1902606, 2019. View at: Publisher Site | Google Scholar
- X. Wu, Y. Shao, H. Liu et al., “Epitaxial growth and air-stability of monolayer antimonene on PdTe2,” Advanced Materials, vol. 29, no. 11, article 1605407, 2017. View at: Publisher Site | Google Scholar
- Z. Q. Shi, H. Li, Q. Q. Yuan et al., “van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure,” Advanced Materials, vol. 31, no. 5, article 1806130, 2019. View at: Publisher Site | Google Scholar
- F. Reis, G. Li, L. Dudy et al., “Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin hall material,” Science, vol. 357, no. 6348, pp. 287–290, 2017. View at: Publisher Site | Google Scholar
- W. Lu, H. Nan, J. Hong et al., “Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization,” Nano Research, vol. 7, no. 6, pp. 853–859, 2014. View at: Publisher Site | Google Scholar
- J. Jia, S. K. Jang, S. Lai et al., “Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties,” ACS Nano, vol. 9, no. 9, pp. 8729–8736, 2015. View at: Publisher Site | Google Scholar
- H. S. Tsai, S. W. Wang, C. H. Hsiao et al., “Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons,” Chemistry of Materials, vol. 28, no. 2, pp. 425–429, 2016. View at: Publisher Site | Google Scholar
- J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O'Brien, “Production of few-layer phosphorene by liquid exfoliation of black phosphorus,” Chemical Communications, vol. 50, no. 87, pp. 13338–13341, 2014. View at: Publisher Site | Google Scholar
- C. Gibaja, D. Rodriguez-San-Miguel, P. Ares et al., “Few-layer antimonene by liquid-phase exfoliation,” Angewandte Chemie International Edition, vol. 55, no. 46, pp. 14345–14349, 2016. View at: Publisher Site | Google Scholar
- S. M. Beladi-Mousavi, A. M. Pourrahimi, Z. Sofer, and M. Pumera, “Atomically thin 2D-arsenene by liquid-phased exfoliation: toward selective vapor sensing,” Advanced Functional Materials, vol. 29, no. 5, article 1807004, 2018. View at: Publisher Site | Google Scholar
- Y. Huang, C. Zhu, S. Zhang et al., “Ultrathin bismuth nanosheets for stable Na-ion batteries: clarification of structure and phase transition by in situ observation,” Nano Letters, vol. 19, no. 2, pp. 1118–1123, 2019. View at: Publisher Site | Google Scholar
- Z. Yang, J. Hao, S. Yuan et al., “Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition,” Advanced Materials, vol. 27, no. 25, pp. 3748–3754, 2015. View at: Publisher Site | Google Scholar
- L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S.-Z. Qiao, “Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction,” ACS Catalysis, vol. 9, no. 4, pp. 2902–2908, 2019. View at: Publisher Site | Google Scholar
- L. Cai, J. He, Q. Liu et al., “Vacancy-induced ferromagnetism of MoS2 nanosheets,” Journal of the American Chemical Society, vol. 137, no. 7, pp. 2622–2627, 2015. View at: Publisher Site | Google Scholar
- R. Gusmão, Z. Sofer, D. Bouša, and M. Pumera, “Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders,” Angewandte Chemie International Edition, vol. 56, no. 46, pp. 14417–14422, 2017. View at: Publisher Site | Google Scholar
- Z. Yang, Z. Wu, Y. Lyu, and J. Hao, “Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition,” InfoMat, vol. 1, no. 1, pp. 98–107, 2019. View at: Publisher Site | Google Scholar
- L. Guan, B. Xing, X. Niu et al., “Metal-assisted exfoliation of few-layer black phosphorus with high yield,” Chemical Communications, vol. 54, no. 6, pp. 595–598, 2018. View at: Publisher Site | Google Scholar
- Z. Guo, H. Zhang, S. Lu et al., “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Advanced Functional Materials, vol. 25, no. 45, pp. 6996–7002, 2015. View at: Publisher Site | Google Scholar
- F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, 2010. View at: Publisher Site | Google Scholar
- H. Du, X. Lin, Z. Xu, and D. Chu, “Recent developments in black phosphorus transistors,” Journal of Materials Chemistry C, vol. 3, no. 34, pp. 8760–8775, 2015. View at: Publisher Site | Google Scholar
- W. Zhu, M. N. Yogeesh, S. Yang et al., “Flexible black phosphorus ambipolar transistors, circuits and AM demodulator,” Nano Letters, vol. 15, no. 3, pp. 1883–1890, 2015. View at: Publisher Site | Google Scholar
- H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chemical Society Reviews, vol. 44, no. 9, pp. 2732–2743, 2015. View at: Publisher Site | Google Scholar
- J. Wu, H. Yuan, M. Meng et al., “High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se,” Nature Nanotechnology, vol. 12, no. 6, pp. 530–534, 2017. View at: Publisher Site | Google Scholar
- Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano, vol. 8, no. 10, pp. 10035–10042, 2014. View at: Publisher Site | Google Scholar
- F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “Ballistic transport in monolayer black phosphorus transistors,” IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3871–3876, 2014. View at: Publisher Site | Google Scholar
- B. Liu, M. Köpf, A. N. Abbas et al., “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Advanced Materials, vol. 27, no. 30, pp. 4423–4429, 2015. View at: Publisher Site | Google Scholar
- M. Zhong, Q. Xia, L. Pan et al., “Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic,” Advanced Functional Materials, vol. 28, no. 43, article 1802581, 2018. View at: Publisher Site | Google Scholar
- S. Das, M. Demarteau, and A. Roelofs, “Ambipolar phosphorene field effect transistor,” ACS Nano, vol. 8, no. 11, pp. 11730–11738, 2014. View at: Publisher Site | Google Scholar
- S. Seo, B. Park, Y. Kim et al., “Black phosphorus quantum dot-based field-effect transistors with ambipolar characteristics,” Applied Surface Science, vol. 448, pp. 576–582, 2018. View at: Publisher Site | Google Scholar
- X. Feng, X. Huang, L. Chen, W. C. Tan, L. Wang, and K.-W. Ang, “High mobility anisotropic black phosphorus nanoribbon field-effect transistor,” Advanced Functional Materials, vol. 28, no. 28, article 1801524, 2018. View at: Publisher Site | Google Scholar
- P. Zhao, J. Li, W. Wei et al., “Giant anisotropic photogalvanic effect in a flexible AsSb Monolayer with ultrahigh carrier mobility,” Physical Chemistry Chemical Physics, vol. 19, no. 40, pp. 27233–27239, 2017. View at: Publisher Site | Google Scholar
- F. Chu, M. Chen, Y. Wang et al., “A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy,” Journal of Materials Chemistry C, vol. 6, no. 10, pp. 2509–2514, 2018. View at: Publisher Site | Google Scholar
- T. Hong, B. Chamlagain, W. Lin et al., “Polarized photocurrent response in black phosphorus field-effect transistors,” Nanoscale, vol. 6, no. 15, pp. 8978–8983, 2014. View at: Publisher Site | Google Scholar
- F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nature Communications, vol. 5, no. 1, article 4458, 2014. View at: Publisher Site | Google Scholar
- J. Miao, S. Zhang, L. Cai, M. Scherr, and C. Wang, “Ultrashort channel length black phosphorus field-effect transistors,” ACS Nano, vol. 9, no. 9, pp. 9236–9243, 2015. View at: Publisher Site | Google Scholar
- X. Yan, H. Wang, and I. Sanchez Esqueda, “Temperature-dependent transport in ultrathin black phosphorus field-effect transistors,” Nano Letters, vol. 19, no. 1, pp. 482–487, 2019. View at: Publisher Site | Google Scholar
- N. Haratipour, M. C. Robbins, and S. J. Koester, “Black phosphorus P-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance,” IEEE Electron Device Letters, vol. 36, no. 4, pp. 411–413, 2015. View at: Publisher Site | Google Scholar
- X. Sun, Z. Song, S. Liu et al., “Sub-5 nm monolayer arsenene and antimonene transistors,” ACS Applied Materials & Interfaces, vol. 10, no. 26, pp. 22363–22371, 2018. View at: Publisher Site | Google Scholar
- H. Li, J. Tie, J. Li et al., “High-performance sub-10-nm monolayer black phosphorene tunneling transistors,” Nano Research, vol. 11, no. 5, pp. 2658–2668, 2018. View at: Publisher Site | Google Scholar
- H. Li, B. Shi, Y. Pan et al., “Sub-5 nm monolayer black phosphorene tunneling transistors,” Nanotechnology, vol. 29, no. 48, article 485202, 2018. View at: Publisher Site | Google Scholar
- R. Quhe, Q. Li, Q. Zhang et al., “Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors,” Physical Review Applied, vol. 10, no. 2, article 024002, 2018. View at: Publisher Site | Google Scholar
- H. Li and J. Lu, “Sub-10 nm vertical tunneling transistors based on layered black phosphorene homojunction,” Applied Surface Science, vol. 465, pp. 895–901, 2019. View at: Publisher Site | Google Scholar
- J. Wang, Q. Cai, J. Lei et al., “Performance of monolayer blue phosphorene double-gate MOSFETs from the first principles,” ACS Applied Materials & Interfaces, vol. 11, no. 23, pp. 20956–20964, 2019. View at: Publisher Site | Google Scholar
- C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, and L.-M. Peng, “Scaling carbon nanotube complementary transistors to 5-nm gate lengths,” Science, vol. 355, no. 6322, pp. 271–276, 2017. View at: Publisher Site | Google Scholar
- S. B. Desai, S. R. Madhvapathy, A. B. Sachid et al., “MoS2 transistors with 1-nanometer gate lengths,” Science, vol. 354, no. 6308, pp. 99–102, 2016. View at: Publisher Site | Google Scholar
- A. Nourbakhsh, A. Zubair, R. N. Sajjad et al., “MoS2 field-effect transistor with sub-10 nm channel length,” Nano Letters, vol. 16, no. 12, pp. 7798–7806, 2016. View at: Publisher Site | Google Scholar
- L. Xie, M. Liao, S. Wang et al., “Graphene-contacted ultrashort channel monolayer MoS2 transistors,” Advanced Materials, vol. 29, no. 37, article 1702522, 2017. View at: Publisher Site | Google Scholar
- K. T. Lam, Z. Dong, and J. Guo, “Performance limits projection of black phosphorous field-effect transistors,” IEEE Electron Device Letters, vol. 35, no. 9, pp. 963–965, 2014. View at: Publisher Site | Google Scholar
- R. Wan, X. Cao, and J. Guo, “Simulation of phosphorene Schottky-barrier transistors,” Applied Physics Letters, vol. 105, no. 16, article 163511, 2014. View at: Publisher Site | Google Scholar
- X. Cao and J. Guo, “Simulation of phosphorene field-effect transistor at the scaling limit,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 659–665, 2015. View at: Publisher Site | Google Scholar
- J. Chang and C. Hobbs, “Theoretical study of phosphorene tunneling field effect transistors,” Applied Physics Letters, vol. 106, no. 8, article 083509, 2015. View at: Publisher Site | Google Scholar
- Y. Wang, P. Huang, M. Ye et al., “Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene,” Chemistry of Materials, vol. 29, no. 5, pp. 2191–2201, 2017. View at: Publisher Site | Google Scholar
- F. W. Chen, H. Ilatikhameneh, T. A. Ameen, G. Klimeck, and R. Rahman, “Thickness engineered tunnel field-effect transistors based on phosphorene,” IEEE Electron Device Letters, vol. 38, no. 1, pp. 130–133, 2017. View at: Publisher Site | Google Scholar
- F. Liu, Q. Shi, J. Wang, and H. Guo, “Device performance simulations of multilayer black phosphorus tunneling transistors,” Applied Physics Letters, vol. 107, no. 20, article 203501, 2015. View at: Publisher Site | Google Scholar
- N. Haratipour, S. Namgung, S. H. Oh, and S. J. Koester, “Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors,” ACS Nano, vol. 10, no. 3, pp. 3791–3800, 2016. View at: Publisher Site | Google Scholar
- S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, “Tunable transport gap in phosphorene,” Nano Letters, vol. 14, no. 10, pp. 5733–5739, 2014. View at: Publisher Site | Google Scholar
- D. Yin and Y. Yoon, “Design strategy of two-dimensional material field-effect transistors: engineering the number of layers in phosphorene FETs,” Journal of Applied Physics, vol. 119, no. 21, article 214312, 2016. View at: Publisher Site | Google Scholar
- J. Chen, Z. Yang, W. Zhou, H. Zou, M. Li, and F. Ouyang, “Monolayer-trilayer lateral heterostructure based antimonene field effect transistor: better contact and high on/off ratios,” physica status solidi (RRL) - Rapid Research Letters, vol. 12, no. 5, article 1800038, 2018. View at: Publisher Site | Google Scholar
- J. Chang, “Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures,” Nanoscale, vol. 10, no. 28, pp. 13652–13660, 2018. View at: Publisher Site | Google Scholar
- D. Seo and J. Chang, “Doping-free arsenene heterostructure metal-oxide-semiconductor field effect transistors enabled by thickness modulated semiconductor to metal transition in arsenene,” Scientific Reports, vol. 9, no. 1, article 3988, 2019. View at: Publisher Site | Google Scholar
- M. Hu, Z. Yang, W. Zhou, A. Li, J. Pan, and F. Ouyang, “Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: a first-principles study,” Physica E: Low-dimensional Systems and Nanostructures, vol. 98, pp. 60–65, 2018. View at: Publisher Site | Google Scholar
- Z. Zhang, L. Li, J. Horng et al., “Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors,” Nano Letters, vol. 17, no. 10, pp. 6097–6103, 2017. View at: Publisher Site | Google Scholar
- W. Zhu, S. Park, M. N. Yogeesh, K. M. McNicholas, S. R. Bank, and D. Akinwande, “Black phosphorus flexible thin film transistors at gighertz frequencies,” Nano Letters, vol. 16, no. 4, pp. 2301–2306, 2016. View at: Publisher Site | Google Scholar
- H. Wang, X. Wang, F. Xia et al., “Black phosphorus radio-frequency transistors,” Nano Letters, vol. 14, no. 11, pp. 6424–6429, 2014. View at: Publisher Site | Google Scholar
- B. Yang, B. Wan, Q. Zhou et al., “Te-doped black phosphorus field-effect transistors,” Advanced Materials, vol. 28, no. 42, pp. 9408–9415, 2016. View at: Publisher Site | Google Scholar
- W. C. Tan, Y. Cai, R. J. Ng et al., “Few-layer black phosphorus carbide field-effect transistor via carbon doping,” Advanced Materials, vol. 29, no. 24, article 1700503, 2017. View at: Publisher Site | Google Scholar
- Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “van der Waals heterostructures and devices,” Nature Reviews Materials, vol. 1, no. 9, article 16042, 2016. View at: Publisher Site | Google Scholar
- J. Kang, D. Jariwala, C. R. Ryder et al., “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Letters, vol. 16, no. 4, pp. 2580–2585, 2016. View at: Publisher Site | Google Scholar
- Y. Deng, Z. Luo, N. J. Conrad et al., “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano, vol. 8, no. 8, pp. 8292–8299, 2014. View at: Publisher Site | Google Scholar
- D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, and Z. Zhang, “Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures,” Advanced Functional Materials, vol. 25, no. 47, pp. 7360–7365, 2015. View at: Publisher Site | Google Scholar
- R. Yan, S. Fathipour, Y. Han et al., “Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment,” Nano Letters, vol. 15, no. 9, pp. 5791–5798, 2015. View at: Publisher Site | Google Scholar
- P. Chen, T. T. Zhang, J. Zhang et al., “Gate tunable WSe2-Bp van der Waals heterojunction devices,” Nanoscale, vol. 8, no. 6, pp. 3254–3258, 2016. View at: Publisher Site | Google Scholar
- R. Zhou, V. Ostwal, and J. Appenzeller, “Vertical versus lateral two-dimensional heterostructures: on the topic of atomically abrupt p/n-junctions,” Nano Letters, vol. 17, no. 8, pp. 4787–4792, 2017. View at: Publisher Site | Google Scholar
- D. Li, B. Wang, M. Chen, J. Zhou, and Z. Zhang, “Gate-controlled Bp-WSe2 heterojunction diode for logic rectifiers and logic optoelectronics,” Small, vol. 13, no. 21, article 1603726, 2017. View at: Publisher Site | Google Scholar
- X. Liu, D. Qu, H. M. Li et al., “Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction,” ACS Nano, vol. 11, no. 9, pp. 9143–9150, 2017. View at: Publisher Site | Google Scholar
- Y. Cao, A. Mishchenko, G. L. Yu et al., “Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere,” Nano Letters, vol. 15, no. 8, pp. 4914–4921, 2015. View at: Publisher Site | Google Scholar
- J. Yuan, S. Najmaei, Z. Zhang et al., “Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus,” ACS Nano, vol. 9, no. 1, pp. 555–563, 2015. View at: Publisher Site | Google Scholar
- R. A. Doganov, E. C. T. O'Farrell, S. P. Koenig et al., “Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere,” Nature Communications, vol. 6, no. 1, article 6647, 2015. View at: Publisher Site | Google Scholar
- N. Gillgren, D. Wickramaratne, Y. Shi et al., “Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures,” 2D Materials, vol. 2, no. 1, article 011001, 2014. View at: Publisher Site | Google Scholar
- A. Avsar, I. J. Vera-Marun, J. Y. Tan et al., “Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors,” ACS Nano, vol. 9, no. 4, pp. 4138–4145, 2015. View at: Publisher Site | Google Scholar
- X. Chen, C. Chen, A. Levi et al., “Large-velocity saturation in thin-film black phosphorus transistors,” ACS Nano, vol. 12, no. 5, pp. 5003–5010, 2018. View at: Publisher Site | Google Scholar
- R. Quhe, S. Feng, J. Lu, and M. Lei, “Electronic properties of layered phosphorus heterostructures,” Physical Chemistry Chemical Physics, vol. 19, no. 2, pp. 1229–1235, 2017. View at: Publisher Site | Google Scholar
- L. Wang, L. Huang, W. C. Tan, X. Feng, L. Chen, and K.-W. Ang, “Tunable black phosphorus heterojunction transistors for multifunctional optoelectronics,” Nanoscale, vol. 10, no. 29, pp. 14359–14367, 2018. View at: Publisher Site | Google Scholar
- J. Miao, B. Song, Q. Li et al., “Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors,” ACS Nano, vol. 11, no. 6, pp. 6048–6056, 2017. View at: Publisher Site | Google Scholar
- S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Applied Physics Letters, vol. 104, no. 10, article 103106, 2014. View at: Publisher Site | Google Scholar
- F. Wu, H. Xia, H. Sun et al., “AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity,” Advanced Functional Materials, vol. 29, no. 12, article 1900314, 2019. View at: Publisher Site | Google Scholar
- W. Zhou, X. Liu, X. Hu et al., “Band offsets in new BN/BX (X = P, As, Sb) lateral heterostructures based on bond-orbital theory,” Nanoscale, vol. 10, no. 34, pp. 15918–15925, 2018. View at: Publisher Site | Google Scholar
- P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, and S. Im, “Black phosphorus-zinc oxide nanomaterial heterojunction for p-n diode and junction field-effect transistor,” Nano Letters, vol. 16, no. 2, pp. 1293–1298, 2016. View at: Publisher Site | Google Scholar
- A. Gao, J. Lai, Y. Wang et al., “Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures,” Nature Nanotechnology, vol. 14, no. 3, pp. 217–222, 2019. View at: Publisher Site | Google Scholar
- J. Lu, J. Wu, A. Carvalho et al., “Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials,” ACS Nano, vol. 9, no. 10, pp. 10411–10421, 2015. View at: Publisher Site | Google Scholar
- C. Han, Z. Hu, A. Carvalho et al., “Oxygen induced strong mobility modulation in few-layer black phosphorus,” 2D Materials, vol. 4, no. 2, article 021007, 2017. View at: Publisher Site | Google Scholar
- S. Zhang, W. Zhou, Y. Ma et al., “Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator,” Nano Letters, vol. 17, no. 6, pp. 3434–3440, 2017. View at: Publisher Site | Google Scholar
- W. Zhou, B. Cai, S. Guo et al., “Robust two-dimensional topological insulators in derivatives of group-VA oxides with large band gap: tunable quantum spin hall states,” Applied Materials Today, vol. 15, pp. 163–170, 2019. View at: Publisher Site | Google Scholar
- M. Xie, S. Zhang, B. Cai, Y. Zou, and H. Zeng, “N- and p-type doping of antimonene,” RSC Advances, vol. 6, no. 18, pp. 14620–14625, 2016. View at: Publisher Site | Google Scholar
- M. Zhong, X. Wang, S. Liu et al., “High-performance photodetectors based on Sb2S3 nanowires: wavelength dependence and wide temperature range utilization,” Nanoscale, vol. 9, no. 34, pp. 12364–12371, 2017. View at: Publisher Site | Google Scholar
- J. Liu, X. Liu, Z. Chen et al., “Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer,” Nano Research, vol. 12, no. 2, pp. 463–468, 2019. View at: Publisher Site | Google Scholar
- M. Zhong, C. Shen, L. Huang et al., “Electronic structure and exciton shifts in Sb-doped MoS2 monolayer,” npj 2D Materials and Applications, vol. 3, no. 1, p. 1, 2019. View at: Publisher Site | Google Scholar
- A. Prakash, Y. Cai, G. Zhang, Y. W. Zhang, and K. W. Ang, “Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping,” Small, vol. 13, no. 5, article 1602909, 2017. View at: Publisher Site | Google Scholar
- Z. Wang, J. Lu, J. Wang et al., “Air-stable n-doped black phosphorus transistor by thermal deposition of metal adatoms,” Nanotechnology, vol. 30, no. 13, article 135201, 2019. View at: Publisher Site | Google Scholar
- Y. Liu, Y. Cai, G. Zhang, Y.-W. Zhang, and K.-W. Ang, “Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic,” Advanced Functional Materials, vol. 27, no. 7, article 1604638, 2017. View at: Publisher Site | Google Scholar
- C. Han, Z. Hu, L. C. Gomes et al., “Surface functionalization of black phosphorus via potassium toward high-performance complementary devices,” Nano Letters, vol. 17, no. 7, pp. 4122–4129, 2017. View at: Publisher Site | Google Scholar
- Y. Ge, S. Chen, Y. Xu et al., “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” Journal of Materials Chemistry C, vol. 5, no. 25, pp. 6129–6135, 2017. View at: Publisher Site | Google Scholar
- W. Lv, B. Yang, B. Wang et al., “Sulfur-doped black phosphorus field-effect transistors with enhanced stability,” ACS Applied Materials & Interfaces, vol. 10, no. 11, pp. 9663–9668, 2018. View at: Publisher Site | Google Scholar
- T. Gao, X. Li, X. Xiong, M. Huang, T. Li, and Y. Wu, “Optimized transport properties in lithium doped black phosphorus transistors,” IEEE Electron Device Letters, vol. 39, no. 5, pp. 769–772, 2018. View at: Publisher Site | Google Scholar
- S. P. Koenig, R. A. Doganov, L. Seixas et al., “Electron doping of ultrathin black phosphorus with Cu adatoms,” Nano Letters, vol. 16, no. 4, pp. 2145–2151, 2016. View at: Publisher Site | Google Scholar
- D. Xiang, C. Han, J. Wu et al., “Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus,” Nature Communications, vol. 6, no. 1, article 6485, 2015. View at: Publisher Site | Google Scholar
- Y. Xu, J. Yuan, K. Zhang et al., “Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility,” Advanced Functional Materials, vol. 27, no. 38, article 1702211, 2017. View at: Publisher Site | Google Scholar
- Y. He, F. Xia, Z. Shao, J. Zhao, and J. Jie, “Surface charge transfer doping of monolayer phosphorene via molecular adsorption,” The Journal of Physical Chemistry Letters, vol. 6, no. 23, pp. 4701–4710, 2015. View at: Publisher Site | Google Scholar
- F. Xia, S. Xiong, Y. He, Z. Shao, X. Zhang, and J. Jie, “Tuning the electronic and optical properties of monolayers as, Sb, and bi via surface charge transfer doping,” The Journal of Physical Chemistry C, vol. 121, no. 35, pp. 19530–19537, 2017. View at: Publisher Site | Google Scholar
- M. M. R. Moayed, T. Bielewicz, H. Noei, A. Stierle, and C. Klinke, “High-performance n- and p-type field-effect transistors based on hybridly surface-passivated colloidal PbS nanosheets,” Advanced Functional Materials, vol. 28, no. 19, article 1706815, 2018. View at: Publisher Site | Google Scholar
- S. Lee, C. Yoon, J. H. Lee et al., “Enhanced performance of field-effect transistors based on black phosphorus channels reduced by galvanic corrosion of Al overlayers,” ACS Applied Materials & Interfaces, vol. 10, no. 22, pp. 18895–18901, 2018. View at: Publisher Site | Google Scholar
- W. Dickerson, V. Tayari, I. Fakih et al., “Phosphorus oxide gate dielectric for black phosphorus field effect transistors,” Applied Physics Letters, vol. 112, no. 17, article 173101, 2018. View at: Publisher Site | Google Scholar
- D. H. Kwak, H. S. Ra, J. Yang et al., “Recovery mechanism of degraded black phosphorus field-effect transistors by 1,2-ethanedithiol chemistry and extended device stability,” Small, vol. 14, no. 6, article 1703194, 2018. View at: Publisher Site | Google Scholar
- X. Li, J. Wu, Y. Ye et al., “Performance and reliability improvement under high current densities in black phosphorus transistors by interface engineering,” ACS Applied Materials & Interfaces, vol. 11, no. 1, pp. 1587–1594, 2019. View at: Publisher Site | Google Scholar
- L. Wang, W. Liao, S. Xu, X. Gong, C. Zhu, and K.-W. Ang, “Unipolar n-type conduction in black phosphorus induced by atomic layer deposited MgO,” IEEE Electron Device Letters, vol. 40, no. 3, pp. 471–474, 2019. View at: Publisher Site | Google Scholar
- Y. Zheng, Z. Hu, C. Han et al., “Black phosphorus inverter devices enabled by in-situ aluminum surface modification,” Nano Research, vol. 12, no. 3, pp. 531–536, 2018. View at: Publisher Site | Google Scholar
- H. S. Ra, A. Y. Lee, D. H. Kwak, M. H. Jeong, and J. S. Lee, “Dual-gate black phosphorus field-effect transistors with hexagonal boron nitride as dielectric and passivation layers,” ACS Applied Materials & Interfaces, vol. 10, no. 1, pp. 925–932, 2018. View at: Publisher Site | Google Scholar
- B. Wan, Q. Zhou, J. Zhang et al., “Enhanced stability of black phosphorus field-effect transistors via hydrogen treatment,” Advanced Electronic Materials, vol. 4, no. 2, article 1700455, 2018. View at: Publisher Site | Google Scholar
- X. Feng, L. Wang, X. Huang, L. Chen, and K. W. Ang, “Complementary black phosphorus nanoribbons field-effect transistors and circuits,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4122–4128, 2018. View at: Publisher Site | Google Scholar
- A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nature Materials, vol. 14, pp. 1195–1205, 2015. View at: Publisher Site | Google Scholar
- F. Gao, H. Yang, and P. Hu, “Interfacial engineering for fabricating high-performance field-effect transistors based on 2D materials,” Small Methods, vol. 2, no. 6, article 1700384, 2018. View at: Publisher Site | Google Scholar
- Z. Cheng, K. Price, and A. D. Franklin, “Contacting and gating 2-D nanomaterials,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4073–4083, 2018. View at: Publisher Site | Google Scholar
- D. S. Schulman, A. J. Arnold, and S. Das, “Contact engineering for 2D materials and devices,” Chemical Society Reviews, vol. 47, no. 9, pp. 3037–3058, 2018. View at: Publisher Site | Google Scholar
- A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model,” Nature Communications, vol. 6, no. 1, article 8948, 2015. View at: Publisher Site | Google Scholar
- M. V. Kamalakar, B. N. Madhushankar, A. Dankert, and S. P. Dash, “Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts,” Small, vol. 11, no. 18, pp. 2209–2216, 2015. View at: Publisher Site | Google Scholar
- G. Wang, L. Bao, T. Pei et al., “Introduction of interfacial charges to black phosphorus for a family of planar devices,” Nano Letters, vol. 16, no. 11, pp. 6870–6878, 2016. View at: Publisher Site | Google Scholar
- A. Avsar, J. Y. Tan, X. Luo et al., “van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices,” Nano Letters, vol. 17, no. 9, pp. 5361–5367, 2017. View at: Publisher Site | Google Scholar
- J. Li, X. Sun, C. Xu et al., “Electrical contacts in monolayer blue phosphorene devices,” Nano Research, vol. 11, no. 4, pp. 1834–1849, 2018. View at: Publisher Site | Google Scholar
- K. Hirose, T. Osada, K. Uchida et al., “Double carrier transport in electron-doped region in black phosphorus FET,” Applied Physics Letters, vol. 113, no. 19, article 193101, 2018. View at: Publisher Site | Google Scholar
- F. Yang, Z. Zhang, N. Z. Wang et al., “Quantum hall effect in electron-doped black phosphorus field-effect transistors,” Nano Letters, vol. 18, no. 10, pp. 6611–6616, 2018. View at: Publisher Site | Google Scholar
- Y. Pan, Y. Wang, M. Ye et al., “Monolayer phosphorene-metal contacts,” Chemistry of Materials, vol. 28, no. 7, pp. 2100–2109, 2016. View at: Publisher Site | Google Scholar
- R. Quhe, Y. Wang, M. Ye et al., “Black phosphorus transistors with van der Waals-type electrical contacts,” Nanoscale, vol. 9, no. 37, pp. 14047–14057, 2017. View at: Publisher Site | Google Scholar
- R. Quhe, X. Peng, Y. Pan et al., “Can a black phosphorus Schottky barrier transistor be good enough?” ACS Applied Materials & Interfaces, vol. 9, no. 4, pp. 3959–3966, 2017. View at: Publisher Site | Google Scholar
- Y. Pan, Y. Dan, Y. Wang et al., “Schottky barriers in bilayer phosphorene transistors,” ACS Applied Materials & Interfaces, vol. 9, no. 14, pp. 12694–12705, 2017. View at: Publisher Site | Google Scholar
- X. Zhang, Y. Pan, M. Ye et al., “Three-layer phosphorene-metal interfaces,” Nano Research, vol. 11, no. 2, pp. 707–721, 2018. View at: Publisher Site | Google Scholar
- Y. Wang, M. Ye, M. Weng et al., “Electrical contacts in monolayer arsenene devices,” ACS Applied Materials & Interfaces, vol. 9, no. 34, pp. 29273–29284, 2017. View at: Publisher Site | Google Scholar
- Z. P. Ling, S. Sakar, S. Mathew et al., “Black phosphorus transistors with near band edge contact Schottky barrier,” Scientific Reports, vol. 5, no. 1, article 18000, 2015. View at: Publisher Site | Google Scholar
- L. Li, M. Engel, D. B. Farmer, S. J. Han, and H. S. P. Wong, “High-performance p-type black phosphorus transistor with scandium contact,” ACS Nano, vol. 10, no. 4, pp. 4672–4677, 2016. View at: Publisher Site | Google Scholar
- H.-M. Chang, K.-L. Fan, A. Charnas et al., “Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors,” Journal of Physics D: Applied Physics, vol. 51, no. 13, article 135306, 2018. View at: Publisher Site | Google Scholar
- N. Haratipour, S. Namgung, R. Grassi, T. Low, S.-H. Oh, and S. J. Koester, “High-performance black phosphorus MOSFETs using crystal orientation control and contact engineering,” IEEE Electron Device Letters, vol. 38, no. 5, pp. 685–688, 2017. View at: Publisher Site | Google Scholar
- B. Jiang, X. Zou, J. Su et al., “Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors,” Advanced Functional Materials, vol. 28, no. 26, article 1801398, 2018. View at: Publisher Site | Google Scholar
- C. H. Wang, J. A. C. Incorvia, C. J. McClellan et al., “Unipolar n-type black phosphorus transistors with low work function contacts,” Nano Letters, vol. 18, no. 5, pp. 2822–2827, 2018. View at: Publisher Site | Google Scholar
- N. Oliva, E. A. Casu, W. A. Vitale, I. Stolichnov, and A. M. Ionescu, “Polarity control of top gated black phosphorous FETs by workfunction engineering of pre-patterned Au and Ag embedded electrodes,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 1041–1047, 2018. View at: Publisher Site | Google Scholar
- K. Gong, L. Zhang, W. Ji, and H. Guo, “Electrical contacts to monolayer black phosphorus: a first-principles investigation,” Physical Review B, vol. 90, no. 12, article 125441, 2014. View at: Publisher Site | Google Scholar
- L. Teitz and M. C. Toroker, “Theoretical investigation of dielectric materials for two-dimensional field-effect transistors,” Advanced Functional Materials, vol. 29, no. article 1808544, 2019. View at: Publisher Site | Google Scholar
- L. M. Yang, G. Qiu, M. W. Si et al., “Few-layer black phosporous PMOSFETs with Bn/Ai2o3 bilayer gate dielectric: achieving Ion=850μA/Μm, Gm=340μs/Μm, and Rc=0.58kΩ·μm,” in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 5.5.1–5.5.4, San Francisco, CA, USA, December 2016. View at: Publisher Site | Google Scholar
- H. Liu, A. T. Neal, M. Si, Y. Du, and P. D. Ye, “The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights,” IEEE Electron Device Letters, vol. 35, no. 7, pp. 795–797, 2014. View at: Publisher Site | Google Scholar
- N. Haratipour, Y. Liu, R. J. Wu et al., “Mobility anisotropy in black phosphorus MOSFETs with HfO2 gate dielectrics,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4093–4101, 2018. View at: Publisher Site | Google Scholar
- C. D. Liang, R. Ma, Y. Su et al., “Defects and low-frequency noise in irradiated black phosphorus MOSFETs with HfO2 gate dielectrics,” IEEE Transactions on Nuclear Science, vol. 65, no. 6, pp. 1227–1238, 2018. View at: Publisher Site | Google Scholar
- X. Xiong, X. Li, M. Huang, T. Li, T. Gao, and Y. Wu, “High performance black phosphorus electronic and photonic devices with HfLaO dielectric,” IEEE Electron Device Letters, vol. 39, no. 1, pp. 127–130, 2018. View at: Publisher Site | Google Scholar
- F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang, and H. Guo, “Negative capacitance transistors with monolayer black phosphorus,” npj Quantum Materials, vol. 1, no. 1, article 16004, 2016. View at: Publisher Site | Google Scholar
- Y. T. Lee, H. Kwon, J. S. Kim et al., “Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(Vdf-Trfe) polymer,” ACS Nano, vol. 9, no. 10, pp. 10394–10401, 2015. View at: Publisher Site | Google Scholar
- H. Tian, Y.-X. Li, L. Li et al., “Negative capacitance black phosphorus transistors with low SS,” IEEE Transactions on Electron Devices, vol. 66, no. 3, pp. 1579–1583, 2019. View at: Publisher Site | Google Scholar
- Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, and Y. Iwasa, “Gate-tuned thermoelectric power in black phosphorus,” Nano Letters, vol. 16, no. 8, pp. 4819–4824, 2016. View at: Publisher Site | Google Scholar
- G. Gao, B. Wan, X. Liu et al., “Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus,” Advanced Materials, vol. 30, no. 13, article 1705088, 2018. View at: Publisher Site | Google Scholar
- J. S. Kim, P. J. Jeon, J. Lee et al., “Dual gate black phosphorus field effect transistors on glass for nor logic and organic light emitting diode switching,” Nano Letters, vol. 15, no. 9, pp. 5778–5783, 2015. View at: Publisher Site | Google Scholar
- P. Wu, T. Ameen, H. Zhang et al., “Complementary black phosphorus tunneling field-effect transistors,” ACS Nano, vol. 13, no. 1, pp. 377–385, 2019. View at: Publisher Site | Google Scholar
Copyright
Copyright © 2019 Wenhan Zhou et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).