Research / 2019 / Article

Review Article | Open Access

Volume 2019 |Article ID 1046329 | https://doi.org/10.34133/2019/1046329

Wenhan Zhou, Jiayi Chen, Pengxiang Bai, Shiying Guo, Shengli Zhang, Xiufeng Song, Li Tao, Haibo Zeng, "Two-Dimensional Pnictogen for Field-Effect Transistors", Research, vol. 2019, Article ID 1046329, 21 pages, 2019. https://doi.org/10.34133/2019/1046329

Two-Dimensional Pnictogen for Field-Effect Transistors

Received13 May 2019
Accepted07 Sep 2019
Published30 Oct 2019

Abstract

Two-dimensional (2D) layered materials hold great promise for various future electronic and optoelectronic devices that traditional semiconductors cannot afford. 2D pnictogen, group-VA atomic sheet (including phosphorene, arsenene, antimonene, and bismuthene) is believed to be a competitive candidate for next-generation logic devices. This is due to their intriguing physical and chemical properties, such as tunable midrange bandgap and controllable stability. Since the first black phosphorus field-effect transistor (FET) demo in 2014, there has been abundant exciting research advancement on the fundamental properties, preparation methods, and related electronic applications of 2D pnictogen. Herein, we review the recent progress in both material and device aspects of 2D pnictogen FETs. This includes a brief survey on the crystal structure, electronic properties and synthesis, or growth experiments. With more device orientation, this review emphasizes experimental fabrication, performance enhancing approaches, and configuration engineering of 2D pnictogen FETs. At the end, this review outlines current challenges and prospects for 2D pnictogen FETs as a potential platform for novel nanoelectronics.

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at: Publisher Site | Google Scholar
  2. L. Tao, E. Cinquanta, D. Chiappe et al., “Silicene field-effect transistors operating at room temperature,” Nature Nanotechnology, vol. 10, no. 3, pp. 227–231, 2015. View at: Publisher Site | Google Scholar
  3. A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, “Silicene, silicene derivatives, and their device applications,” Chemical Society Reviews, vol. 47, no. 16, pp. 6370–6387, 2018. View at: Publisher Site | Google Scholar
  4. L. Li, Y. Yu, G. J. Ye et al., “Black phosphorus field-effect transistors,” Nature Nanotechnology, vol. 9, no. 5, pp. 372–377, 2014. View at: Publisher Site | Google Scholar
  5. H. Liu, A. T. Neal, Z. Zhu et al., “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, no. 4, pp. 4033–4041, 2014. View at: Publisher Site | Google Scholar
  6. Y. Wang, G. Qiu, R. Wang et al., “Field-effect transistors made from solution-grown two-dimensional tellurene,” Nature Electronics, vol. 1, no. 4, pp. 228–236, 2018. View at: Publisher Site | Google Scholar
  7. J. Yan, X. Zhang, Y. Pan et al., “Monolayer tellurene-metal contacts,” Journal of Materials Chemistry C, vol. 6, no. 23, pp. 6153–6163, 2018. View at: Publisher Site | Google Scholar
  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, vol. 6, no. 3, pp. 147–150, 2011. View at: Publisher Site | Google Scholar
  9. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699–712, 2012. View at: Publisher Site | Google Scholar
  10. K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nature Materials, vol. 3, no. 6, pp. 404–409, 2004. View at: Publisher Site | Google Scholar
  11. L. Song, L. Ci, H. Lu et al., “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Letters, vol. 10, no. 8, pp. 3209–3215, 2010. View at: Publisher Site | Google Scholar
  12. W. Zhou, S. Guo, S. Zhang et al., “Unusual electronic transitions in two-dimensional layered Sn Sb2 Te4 driven by electronic state rehybridization,” Physical Review Applied, vol. 11, no. 6, article 064045, 2019. View at: Publisher Site | Google Scholar
  13. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angewandte Chemie International Edition, vol. 54, no. 10, pp. 3112–3115, 2015. View at: Publisher Site | Google Scholar
  14. S. Zhang, M. Xie, F. Li et al., “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angewandte Chemie International Edition, vol. 55, no. 5, pp. 1666–1669, 2016. View at: Publisher Site | Google Scholar
  15. E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Physical Review B, vol. 94, no. 1, article 014115, 2016. View at: Publisher Site | Google Scholar
  16. M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Advanced Materials, vol. 29, no. 21, article 1605299, 2017. View at: Publisher Site | Google Scholar
  17. J. Sturala, Z. Sofer, and M. Pumera, “Chemistry of layered pnictogens: phosphorus, arsenic, antimony, and bismuth,” Angewandte Chemie, vol. 131, no. 23, pp. 7631–7637, 2019. View at: Publisher Site | Google Scholar
  18. R. Hultgren, N. S. Gingrich, and B. E. Warren, “The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus,” The Journal of Chemical Physics, vol. 3, no. 6, pp. 351–355, 1935. View at: Publisher Site | Google Scholar
  19. R. W. Keyes, “The electrical properties of black phosphorus,” Physical Review, vol. 92, no. 3, pp. 580–584, 1953. View at: Publisher Site | Google Scholar
  20. D. Warschauer, “Electrical and optical properties of crystalline black phosphorus,” Journal of Applied Physics, vol. 34, no. 7, pp. 1853–1860, 1963. View at: Publisher Site | Google Scholar
  21. J. C. Jamieson, “Crystal structures adopted by black phosphorus at high pressures,” Science, vol. 139, no. 3561, pp. 1291-1292, 1963. View at: Publisher Site | Google Scholar
  22. S. Zhang, S. Guo, Z. Chen et al., “Recent progress in 2D group-VA semiconductors: from theory to experiment,” Chemical Society Reviews, vol. 47, no. 3, pp. 982–1021, 2018. View at: Publisher Site | Google Scholar
  23. J. H. Xu, E. G. Wang, C. S. Ting, and W. P. Su, “Tight-binding theory of the electronic structures for rhombohedral semimetals,” Physical Review B, vol. 48, no. 23, pp. 17271–17279, 1993. View at: Publisher Site | Google Scholar
  24. G. N. Greaves, S. R. Elliott, and E. A. Davis, “Amorphous arsenic,” Advances in Physics, vol. 28, no. 1, pp. 49–141, 1979. View at: Publisher Site | Google Scholar
  25. Z. Zhu and D. Tománek, “Semiconducting layered blue phosphorus: a computational study,” Physical Review Letters, vol. 112, no. 17, article 176802, 2014. View at: Publisher Site | Google Scholar
  26. M. Wu, H. Fu, L. Zhou, K. Yao, and X. C. Zeng, “Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family,” Nano Letters, vol. 15, no. 5, pp. 3557–3562, 2015. View at: Publisher Site | Google Scholar
  27. Z. Zhuo, X. Wu, and J. Yang, “Two-dimensional phosphorus porous polymorphs with tunable band gaps,” Journal of the American Chemical Society, vol. 138, no. 22, pp. 7091–7098, 2016. View at: Publisher Site | Google Scholar
  28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” Journal of Chemical Physics, vol. 118, no. 18, pp. 8207–8215, 2003. View at: Publisher Site | Google Scholar
  29. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nature Communications, vol. 5, no. 1, article 4475, 2014. View at: Publisher Site | Google Scholar
  30. L. Hedin, “New method for calculating the one-particle Green’s function with application to the electron-gas problem,” Physical Review, vol. 139, no. 3A, pp. A796–A823, 1965. View at: Publisher Site | Google Scholar
  31. M. Shishkin and G. Kresse, “Implementation and performance of the frequency-dependent GW method within the PAW framework,” Physical Review B, vol. 74, no. 3, article 035101, 2006. View at: Publisher Site | Google Scholar
  32. L. Cheng, H. Liu, X. Tan et al., “Thermoelectric properties of a monolayer bismuth,” The Journal of Physical Chemistry C, vol. 118, no. 2, pp. 904–910, 2014. View at: Publisher Site | Google Scholar
  33. F. Ersan, E. Aktürk, and S. Ciraci, “Stable single-layer structure of group-V elements,” Physical Review B, vol. 94, no. 24, article 245417, 2016. View at: Publisher Site | Google Scholar
  34. Z. Luo, J. Maassen, Y. Deng et al., “Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus,” Nature Communications, vol. 6, no. 1, article 8572, 2015. View at: Publisher Site | Google Scholar
  35. X. Wang, A. M. Jones, K. L. Seyler et al., “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nature Nanotechnology, vol. 10, no. 6, pp. 517–521, 2015. View at: Publisher Site | Google Scholar
  36. J. D. Wood, S. A. Wells, D. Jariwala et al., “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Letters, vol. 14, no. 12, pp. 6964–6970, 2014. View at: Publisher Site | Google Scholar
  37. Y. Anugrah, M. C. Robbins, P. A. Crowell, and S. J. Koester, “Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene,” Applied Physics Letters, vol. 106, no. 10, article 103108, 2015. View at: Publisher Site | Google Scholar
  38. V. Tayari, N. Hemsworth, I. Fakih et al., “Two-dimensional magnetotransport in a black phosphorus naked quantum well,” Nature Communications, vol. 6, no. 1, article 7702, 2015. View at: Publisher Site | Google Scholar
  39. A. Favron, E. Gaufrès, F. Fossard et al., “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nature Materials, vol. 14, no. 8, pp. 826–832, 2015. View at: Publisher Site | Google Scholar
  40. Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano, vol. 9, no. 3, pp. 3192–3198, 2015. View at: Publisher Site | Google Scholar
  41. P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel et al., “Mechanical isolation of highly stable antimonene under ambient conditions,” Advanced Materials, vol. 28, no. 30, pp. 6332–6336, 2016. View at: Publisher Site | Google Scholar
  42. Y. Chen, C. Chen, R. Kealhofer et al., “Black arsenic: a layered semiconductor with extreme in-plane anisotropy,” Advanced Materials, vol. 30, no. 30, article 1800754, 2018. View at: Publisher Site | Google Scholar
  43. J. Ji, X. Song, J. Liu et al., “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nature Communications, vol. 7, no. 1, article 13352, 2016. View at: Publisher Site | Google Scholar
  44. H. A. Chen, H. Sun, C. R. Wu et al., “Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure,” ACS Applied Materials & Interfaces, vol. 10, no. 17, pp. 15058–15064, 2018. View at: Publisher Site | Google Scholar
  45. Y. Shao, Z. L. Liu, C. Cheng et al., “Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene,” Nano Letters, vol. 18, no. 3, pp. 2133–2139, 2018. View at: Publisher Site | Google Scholar
  46. M. Fortin-Deschênes, O. Waller, T. O. Menteş et al., “Synthesis of antimonene on germanium,” Nano Letters, vol. 17, no. 8, pp. 4970–4975, 2017. View at: Publisher Site | Google Scholar
  47. M. Fortin-Deschênes, R. M. Jacobberger, C. A. Deslauriers et al., “Dynamics of antimonene–graphene van der Waals growth,” Advanced Materials, vol. 31, no. 21, article 1900569, 2019. View at: Publisher Site | Google Scholar
  48. T. Niu, W. Zhou, D. Zhou et al., “Modulating epitaxial atomic structure of antimonene through interface design,” Advanced Materials, vol. 31, no. 29, article 1902606, 2019. View at: Publisher Site | Google Scholar
  49. X. Wu, Y. Shao, H. Liu et al., “Epitaxial growth and air-stability of monolayer antimonene on PdTe2,” Advanced Materials, vol. 29, no. 11, article 1605407, 2017. View at: Publisher Site | Google Scholar
  50. Z. Q. Shi, H. Li, Q. Q. Yuan et al., “van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure,” Advanced Materials, vol. 31, no. 5, article 1806130, 2019. View at: Publisher Site | Google Scholar
  51. F. Reis, G. Li, L. Dudy et al., “Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin hall material,” Science, vol. 357, no. 6348, pp. 287–290, 2017. View at: Publisher Site | Google Scholar
  52. W. Lu, H. Nan, J. Hong et al., “Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization,” Nano Research, vol. 7, no. 6, pp. 853–859, 2014. View at: Publisher Site | Google Scholar
  53. J. Jia, S. K. Jang, S. Lai et al., “Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties,” ACS Nano, vol. 9, no. 9, pp. 8729–8736, 2015. View at: Publisher Site | Google Scholar
  54. H. S. Tsai, S. W. Wang, C. H. Hsiao et al., “Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons,” Chemistry of Materials, vol. 28, no. 2, pp. 425–429, 2016. View at: Publisher Site | Google Scholar
  55. J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O'Brien, “Production of few-layer phosphorene by liquid exfoliation of black phosphorus,” Chemical Communications, vol. 50, no. 87, pp. 13338–13341, 2014. View at: Publisher Site | Google Scholar
  56. C. Gibaja, D. Rodriguez-San-Miguel, P. Ares et al., “Few-layer antimonene by liquid-phase exfoliation,” Angewandte Chemie International Edition, vol. 55, no. 46, pp. 14345–14349, 2016. View at: Publisher Site | Google Scholar
  57. S. M. Beladi-Mousavi, A. M. Pourrahimi, Z. Sofer, and M. Pumera, “Atomically thin 2D-arsenene by liquid-phased exfoliation: toward selective vapor sensing,” Advanced Functional Materials, vol. 29, no. 5, article 1807004, 2018. View at: Publisher Site | Google Scholar
  58. Y. Huang, C. Zhu, S. Zhang et al., “Ultrathin bismuth nanosheets for stable Na-ion batteries: clarification of structure and phase transition by in situ observation,” Nano Letters, vol. 19, no. 2, pp. 1118–1123, 2019. View at: Publisher Site | Google Scholar
  59. Z. Yang, J. Hao, S. Yuan et al., “Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition,” Advanced Materials, vol. 27, no. 25, pp. 3748–3754, 2015. View at: Publisher Site | Google Scholar
  60. L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S.-Z. Qiao, “Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction,” ACS Catalysis, vol. 9, no. 4, pp. 2902–2908, 2019. View at: Publisher Site | Google Scholar
  61. L. Cai, J. He, Q. Liu et al., “Vacancy-induced ferromagnetism of MoS2 nanosheets,” Journal of the American Chemical Society, vol. 137, no. 7, pp. 2622–2627, 2015. View at: Publisher Site | Google Scholar
  62. R. Gusmão, Z. Sofer, D. Bouša, and M. Pumera, “Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders,” Angewandte Chemie International Edition, vol. 56, no. 46, pp. 14417–14422, 2017. View at: Publisher Site | Google Scholar
  63. Z. Yang, Z. Wu, Y. Lyu, and J. Hao, “Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition,” InfoMat, vol. 1, no. 1, pp. 98–107, 2019. View at: Publisher Site | Google Scholar
  64. L. Guan, B. Xing, X. Niu et al., “Metal-assisted exfoliation of few-layer black phosphorus with high yield,” Chemical Communications, vol. 54, no. 6, pp. 595–598, 2018. View at: Publisher Site | Google Scholar
  65. Z. Guo, H. Zhang, S. Lu et al., “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Advanced Functional Materials, vol. 25, no. 45, pp. 6996–7002, 2015. View at: Publisher Site | Google Scholar
  66. F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, 2010. View at: Publisher Site | Google Scholar
  67. H. Du, X. Lin, Z. Xu, and D. Chu, “Recent developments in black phosphorus transistors,” Journal of Materials Chemistry C, vol. 3, no. 34, pp. 8760–8775, 2015. View at: Publisher Site | Google Scholar
  68. W. Zhu, M. N. Yogeesh, S. Yang et al., “Flexible black phosphorus ambipolar transistors, circuits and AM demodulator,” Nano Letters, vol. 15, no. 3, pp. 1883–1890, 2015. View at: Publisher Site | Google Scholar
  69. H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chemical Society Reviews, vol. 44, no. 9, pp. 2732–2743, 2015. View at: Publisher Site | Google Scholar
  70. J. Wu, H. Yuan, M. Meng et al., “High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se,” Nature Nanotechnology, vol. 12, no. 6, pp. 530–534, 2017. View at: Publisher Site | Google Scholar
  71. Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano, vol. 8, no. 10, pp. 10035–10042, 2014. View at: Publisher Site | Google Scholar
  72. F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “Ballistic transport in monolayer black phosphorus transistors,” IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3871–3876, 2014. View at: Publisher Site | Google Scholar
  73. B. Liu, M. Köpf, A. N. Abbas et al., “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Advanced Materials, vol. 27, no. 30, pp. 4423–4429, 2015. View at: Publisher Site | Google Scholar
  74. M. Zhong, Q. Xia, L. Pan et al., “Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic,” Advanced Functional Materials, vol. 28, no. 43, article 1802581, 2018. View at: Publisher Site | Google Scholar
  75. S. Das, M. Demarteau, and A. Roelofs, “Ambipolar phosphorene field effect transistor,” ACS Nano, vol. 8, no. 11, pp. 11730–11738, 2014. View at: Publisher Site | Google Scholar
  76. S. Seo, B. Park, Y. Kim et al., “Black phosphorus quantum dot-based field-effect transistors with ambipolar characteristics,” Applied Surface Science, vol. 448, pp. 576–582, 2018. View at: Publisher Site | Google Scholar
  77. X. Feng, X. Huang, L. Chen, W. C. Tan, L. Wang, and K.-W. Ang, “High mobility anisotropic black phosphorus nanoribbon field-effect transistor,” Advanced Functional Materials, vol. 28, no. 28, article 1801524, 2018. View at: Publisher Site | Google Scholar
  78. P. Zhao, J. Li, W. Wei et al., “Giant anisotropic photogalvanic effect in a flexible AsSb Monolayer with ultrahigh carrier mobility,” Physical Chemistry Chemical Physics, vol. 19, no. 40, pp. 27233–27239, 2017. View at: Publisher Site | Google Scholar
  79. F. Chu, M. Chen, Y. Wang et al., “A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy,” Journal of Materials Chemistry C, vol. 6, no. 10, pp. 2509–2514, 2018. View at: Publisher Site | Google Scholar
  80. T. Hong, B. Chamlagain, W. Lin et al., “Polarized photocurrent response in black phosphorus field-effect transistors,” Nanoscale, vol. 6, no. 15, pp. 8978–8983, 2014. View at: Publisher Site | Google Scholar
  81. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nature Communications, vol. 5, no. 1, article 4458, 2014. View at: Publisher Site | Google Scholar
  82. J. Miao, S. Zhang, L. Cai, M. Scherr, and C. Wang, “Ultrashort channel length black phosphorus field-effect transistors,” ACS Nano, vol. 9, no. 9, pp. 9236–9243, 2015. View at: Publisher Site | Google Scholar
  83. X. Yan, H. Wang, and I. Sanchez Esqueda, “Temperature-dependent transport in ultrathin black phosphorus field-effect transistors,” Nano Letters, vol. 19, no. 1, pp. 482–487, 2019. View at: Publisher Site | Google Scholar
  84. N. Haratipour, M. C. Robbins, and S. J. Koester, “Black phosphorus P-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance,” IEEE Electron Device Letters, vol. 36, no. 4, pp. 411–413, 2015. View at: Publisher Site | Google Scholar
  85. X. Sun, Z. Song, S. Liu et al., “Sub-5 nm monolayer arsenene and antimonene transistors,” ACS Applied Materials & Interfaces, vol. 10, no. 26, pp. 22363–22371, 2018. View at: Publisher Site | Google Scholar
  86. H. Li, J. Tie, J. Li et al., “High-performance sub-10-nm monolayer black phosphorene tunneling transistors,” Nano Research, vol. 11, no. 5, pp. 2658–2668, 2018. View at: Publisher Site | Google Scholar
  87. H. Li, B. Shi, Y. Pan et al., “Sub-5 nm monolayer black phosphorene tunneling transistors,” Nanotechnology, vol. 29, no. 48, article 485202, 2018. View at: Publisher Site | Google Scholar
  88. R. Quhe, Q. Li, Q. Zhang et al., “Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors,” Physical Review Applied, vol. 10, no. 2, article 024002, 2018. View at: Publisher Site | Google Scholar
  89. H. Li and J. Lu, “Sub-10 nm vertical tunneling transistors based on layered black phosphorene homojunction,” Applied Surface Science, vol. 465, pp. 895–901, 2019. View at: Publisher Site | Google Scholar
  90. J. Wang, Q. Cai, J. Lei et al., “Performance of monolayer blue phosphorene double-gate MOSFETs from the first principles,” ACS Applied Materials & Interfaces, vol. 11, no. 23, pp. 20956–20964, 2019. View at: Publisher Site | Google Scholar
  91. C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, and L.-M. Peng, “Scaling carbon nanotube complementary transistors to 5-nm gate lengths,” Science, vol. 355, no. 6322, pp. 271–276, 2017. View at: Publisher Site | Google Scholar
  92. S. B. Desai, S. R. Madhvapathy, A. B. Sachid et al., “MoS2 transistors with 1-nanometer gate lengths,” Science, vol. 354, no. 6308, pp. 99–102, 2016. View at: Publisher Site | Google Scholar
  93. A. Nourbakhsh, A. Zubair, R. N. Sajjad et al., “MoS2 field-effect transistor with sub-10 nm channel length,” Nano Letters, vol. 16, no. 12, pp. 7798–7806, 2016. View at: Publisher Site | Google Scholar
  94. L. Xie, M. Liao, S. Wang et al., “Graphene-contacted ultrashort channel monolayer MoS2 transistors,” Advanced Materials, vol. 29, no. 37, article 1702522, 2017. View at: Publisher Site | Google Scholar
  95. K. T. Lam, Z. Dong, and J. Guo, “Performance limits projection of black phosphorous field-effect transistors,” IEEE Electron Device Letters, vol. 35, no. 9, pp. 963–965, 2014. View at: Publisher Site | Google Scholar
  96. R. Wan, X. Cao, and J. Guo, “Simulation of phosphorene Schottky-barrier transistors,” Applied Physics Letters, vol. 105, no. 16, article 163511, 2014. View at: Publisher Site | Google Scholar
  97. X. Cao and J. Guo, “Simulation of phosphorene field-effect transistor at the scaling limit,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 659–665, 2015. View at: Publisher Site | Google Scholar
  98. J. Chang and C. Hobbs, “Theoretical study of phosphorene tunneling field effect transistors,” Applied Physics Letters, vol. 106, no. 8, article 083509, 2015. View at: Publisher Site | Google Scholar
  99. Y. Wang, P. Huang, M. Ye et al., “Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene,” Chemistry of Materials, vol. 29, no. 5, pp. 2191–2201, 2017. View at: Publisher Site | Google Scholar
  100. F. W. Chen, H. Ilatikhameneh, T. A. Ameen, G. Klimeck, and R. Rahman, “Thickness engineered tunnel field-effect transistors based on phosphorene,” IEEE Electron Device Letters, vol. 38, no. 1, pp. 130–133, 2017. View at: Publisher Site | Google Scholar
  101. F. Liu, Q. Shi, J. Wang, and H. Guo, “Device performance simulations of multilayer black phosphorus tunneling transistors,” Applied Physics Letters, vol. 107, no. 20, article 203501, 2015. View at: Publisher Site | Google Scholar
  102. N. Haratipour, S. Namgung, S. H. Oh, and S. J. Koester, “Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors,” ACS Nano, vol. 10, no. 3, pp. 3791–3800, 2016. View at: Publisher Site | Google Scholar
  103. S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, “Tunable transport gap in phosphorene,” Nano Letters, vol. 14, no. 10, pp. 5733–5739, 2014. View at: Publisher Site | Google Scholar
  104. D. Yin and Y. Yoon, “Design strategy of two-dimensional material field-effect transistors: engineering the number of layers in phosphorene FETs,” Journal of Applied Physics, vol. 119, no. 21, article 214312, 2016. View at: Publisher Site | Google Scholar
  105. J. Chen, Z. Yang, W. Zhou, H. Zou, M. Li, and F. Ouyang, “Monolayer-trilayer lateral heterostructure based antimonene field effect transistor: better contact and high on/off ratios,” physica status solidi (RRL) - Rapid Research Letters, vol. 12, no. 5, article 1800038, 2018. View at: Publisher Site | Google Scholar
  106. J. Chang, “Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures,” Nanoscale, vol. 10, no. 28, pp. 13652–13660, 2018. View at: Publisher Site | Google Scholar
  107. D. Seo and J. Chang, “Doping-free arsenene heterostructure metal-oxide-semiconductor field effect transistors enabled by thickness modulated semiconductor to metal transition in arsenene,” Scientific Reports, vol. 9, no. 1, article 3988, 2019. View at: Publisher Site | Google Scholar
  108. M. Hu, Z. Yang, W. Zhou, A. Li, J. Pan, and F. Ouyang, “Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: a first-principles study,” Physica E: Low-dimensional Systems and Nanostructures, vol. 98, pp. 60–65, 2018. View at: Publisher Site | Google Scholar
  109. Z. Zhang, L. Li, J. Horng et al., “Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors,” Nano Letters, vol. 17, no. 10, pp. 6097–6103, 2017. View at: Publisher Site | Google Scholar
  110. W. Zhu, S. Park, M. N. Yogeesh, K. M. McNicholas, S. R. Bank, and D. Akinwande, “Black phosphorus flexible thin film transistors at gighertz frequencies,” Nano Letters, vol. 16, no. 4, pp. 2301–2306, 2016. View at: Publisher Site | Google Scholar
  111. H. Wang, X. Wang, F. Xia et al., “Black phosphorus radio-frequency transistors,” Nano Letters, vol. 14, no. 11, pp. 6424–6429, 2014. View at: Publisher Site | Google Scholar
  112. B. Yang, B. Wan, Q. Zhou et al., “Te-doped black phosphorus field-effect transistors,” Advanced Materials, vol. 28, no. 42, pp. 9408–9415, 2016. View at: Publisher Site | Google Scholar
  113. W. C. Tan, Y. Cai, R. J. Ng et al., “Few-layer black phosphorus carbide field-effect transistor via carbon doping,” Advanced Materials, vol. 29, no. 24, article 1700503, 2017. View at: Publisher Site | Google Scholar
  114. Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “van der Waals heterostructures and devices,” Nature Reviews Materials, vol. 1, no. 9, article 16042, 2016. View at: Publisher Site | Google Scholar
  115. J. Kang, D. Jariwala, C. R. Ryder et al., “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Letters, vol. 16, no. 4, pp. 2580–2585, 2016. View at: Publisher Site | Google Scholar
  116. Y. Deng, Z. Luo, N. J. Conrad et al., “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano, vol. 8, no. 8, pp. 8292–8299, 2014. View at: Publisher Site | Google Scholar
  117. D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, and Z. Zhang, “Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures,” Advanced Functional Materials, vol. 25, no. 47, pp. 7360–7365, 2015. View at: Publisher Site | Google Scholar
  118. R. Yan, S. Fathipour, Y. Han et al., “Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment,” Nano Letters, vol. 15, no. 9, pp. 5791–5798, 2015. View at: Publisher Site | Google Scholar
  119. P. Chen, T. T. Zhang, J. Zhang et al., “Gate tunable WSe2-Bp van der Waals heterojunction devices,” Nanoscale, vol. 8, no. 6, pp. 3254–3258, 2016. View at: Publisher Site | Google Scholar
  120. R. Zhou, V. Ostwal, and J. Appenzeller, “Vertical versus lateral two-dimensional heterostructures: on the topic of atomically abrupt p/n-junctions,” Nano Letters, vol. 17, no. 8, pp. 4787–4792, 2017. View at: Publisher Site | Google Scholar
  121. D. Li, B. Wang, M. Chen, J. Zhou, and Z. Zhang, “Gate-controlled Bp-WSe2 heterojunction diode for logic rectifiers and logic optoelectronics,” Small, vol. 13, no. 21, article 1603726, 2017. View at: Publisher Site | Google Scholar
  122. X. Liu, D. Qu, H. M. Li et al., “Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction,” ACS Nano, vol. 11, no. 9, pp. 9143–9150, 2017. View at: Publisher Site | Google Scholar
  123. Y. Cao, A. Mishchenko, G. L. Yu et al., “Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere,” Nano Letters, vol. 15, no. 8, pp. 4914–4921, 2015. View at: Publisher Site | Google Scholar
  124. J. Yuan, S. Najmaei, Z. Zhang et al., “Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus,” ACS Nano, vol. 9, no. 1, pp. 555–563, 2015. View at: Publisher Site | Google Scholar
  125. R. A. Doganov, E. C. T. O'Farrell, S. P. Koenig et al., “Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere,” Nature Communications, vol. 6, no. 1, article 6647, 2015. View at: Publisher Site | Google Scholar
  126. N. Gillgren, D. Wickramaratne, Y. Shi et al., “Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures,” 2D Materials, vol. 2, no. 1, article 011001, 2014. View at: Publisher Site | Google Scholar
  127. A. Avsar, I. J. Vera-Marun, J. Y. Tan et al., “Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors,” ACS Nano, vol. 9, no. 4, pp. 4138–4145, 2015. View at: Publisher Site | Google Scholar
  128. X. Chen, C. Chen, A. Levi et al., “Large-velocity saturation in thin-film black phosphorus transistors,” ACS Nano, vol. 12, no. 5, pp. 5003–5010, 2018. View at: Publisher Site | Google Scholar
  129. R. Quhe, S. Feng, J. Lu, and M. Lei, “Electronic properties of layered phosphorus heterostructures,” Physical Chemistry Chemical Physics, vol. 19, no. 2, pp. 1229–1235, 2017. View at: Publisher Site | Google Scholar
  130. L. Wang, L. Huang, W. C. Tan, X. Feng, L. Chen, and K.-W. Ang, “Tunable black phosphorus heterojunction transistors for multifunctional optoelectronics,” Nanoscale, vol. 10, no. 29, pp. 14359–14367, 2018. View at: Publisher Site | Google Scholar
  131. J. Miao, B. Song, Q. Li et al., “Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors,” ACS Nano, vol. 11, no. 6, pp. 6048–6056, 2017. View at: Publisher Site | Google Scholar
  132. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Applied Physics Letters, vol. 104, no. 10, article 103106, 2014. View at: Publisher Site | Google Scholar
  133. F. Wu, H. Xia, H. Sun et al., “AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity,” Advanced Functional Materials, vol. 29, no. 12, article 1900314, 2019. View at: Publisher Site | Google Scholar
  134. W. Zhou, X. Liu, X. Hu et al., “Band offsets in new BN/BX (X = P, As, Sb) lateral heterostructures based on bond-orbital theory,” Nanoscale, vol. 10, no. 34, pp. 15918–15925, 2018. View at: Publisher Site | Google Scholar
  135. P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, and S. Im, “Black phosphorus-zinc oxide nanomaterial heterojunction for p-n diode and junction field-effect transistor,” Nano Letters, vol. 16, no. 2, pp. 1293–1298, 2016. View at: Publisher Site | Google Scholar
  136. A. Gao, J. Lai, Y. Wang et al., “Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures,” Nature Nanotechnology, vol. 14, no. 3, pp. 217–222, 2019. View at: Publisher Site | Google Scholar
  137. J. Lu, J. Wu, A. Carvalho et al., “Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials,” ACS Nano, vol. 9, no. 10, pp. 10411–10421, 2015. View at: Publisher Site | Google Scholar
  138. C. Han, Z. Hu, A. Carvalho et al., “Oxygen induced strong mobility modulation in few-layer black phosphorus,” 2D Materials, vol. 4, no. 2, article 021007, 2017. View at: Publisher Site | Google Scholar
  139. S. Zhang, W. Zhou, Y. Ma et al., “Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator,” Nano Letters, vol. 17, no. 6, pp. 3434–3440, 2017. View at: Publisher Site | Google Scholar
  140. W. Zhou, B. Cai, S. Guo et al., “Robust two-dimensional topological insulators in derivatives of group-VA oxides with large band gap: tunable quantum spin hall states,” Applied Materials Today, vol. 15, pp. 163–170, 2019. View at: Publisher Site | Google Scholar
  141. M. Xie, S. Zhang, B. Cai, Y. Zou, and H. Zeng, “N- and p-type doping of antimonene,” RSC Advances, vol. 6, no. 18, pp. 14620–14625, 2016. View at: Publisher Site | Google Scholar
  142. M. Zhong, X. Wang, S. Liu et al., “High-performance photodetectors based on Sb2S3 nanowires: wavelength dependence and wide temperature range utilization,” Nanoscale, vol. 9, no. 34, pp. 12364–12371, 2017. View at: Publisher Site | Google Scholar
  143. J. Liu, X. Liu, Z. Chen et al., “Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer,” Nano Research, vol. 12, no. 2, pp. 463–468, 2019. View at: Publisher Site | Google Scholar
  144. M. Zhong, C. Shen, L. Huang et al., “Electronic structure and exciton shifts in Sb-doped MoS2 monolayer,” npj 2D Materials and Applications, vol. 3, no. 1, p. 1, 2019. View at: Publisher Site | Google Scholar
  145. A. Prakash, Y. Cai, G. Zhang, Y. W. Zhang, and K. W. Ang, “Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping,” Small, vol. 13, no. 5, article 1602909, 2017. View at: Publisher Site | Google Scholar
  146. Z. Wang, J. Lu, J. Wang et al., “Air-stable n-doped black phosphorus transistor by thermal deposition of metal adatoms,” Nanotechnology, vol. 30, no. 13, article 135201, 2019. View at: Publisher Site | Google Scholar
  147. Y. Liu, Y. Cai, G. Zhang, Y.-W. Zhang, and K.-W. Ang, “Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic,” Advanced Functional Materials, vol. 27, no. 7, article 1604638, 2017. View at: Publisher Site | Google Scholar
  148. C. Han, Z. Hu, L. C. Gomes et al., “Surface functionalization of black phosphorus via potassium toward high-performance complementary devices,” Nano Letters, vol. 17, no. 7, pp. 4122–4129, 2017. View at: Publisher Site | Google Scholar
  149. Y. Ge, S. Chen, Y. Xu et al., “Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications,” Journal of Materials Chemistry C, vol. 5, no. 25, pp. 6129–6135, 2017. View at: Publisher Site | Google Scholar
  150. W. Lv, B. Yang, B. Wang et al., “Sulfur-doped black phosphorus field-effect transistors with enhanced stability,” ACS Applied Materials & Interfaces, vol. 10, no. 11, pp. 9663–9668, 2018. View at: Publisher Site | Google Scholar
  151. T. Gao, X. Li, X. Xiong, M. Huang, T. Li, and Y. Wu, “Optimized transport properties in lithium doped black phosphorus transistors,” IEEE Electron Device Letters, vol. 39, no. 5, pp. 769–772, 2018. View at: Publisher Site | Google Scholar
  152. S. P. Koenig, R. A. Doganov, L. Seixas et al., “Electron doping of ultrathin black phosphorus with Cu adatoms,” Nano Letters, vol. 16, no. 4, pp. 2145–2151, 2016. View at: Publisher Site | Google Scholar
  153. D. Xiang, C. Han, J. Wu et al., “Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus,” Nature Communications, vol. 6, no. 1, article 6485, 2015. View at: Publisher Site | Google Scholar
  154. Y. Xu, J. Yuan, K. Zhang et al., “Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility,” Advanced Functional Materials, vol. 27, no. 38, article 1702211, 2017. View at: Publisher Site | Google Scholar
  155. Y. He, F. Xia, Z. Shao, J. Zhao, and J. Jie, “Surface charge transfer doping of monolayer phosphorene via molecular adsorption,” The Journal of Physical Chemistry Letters, vol. 6, no. 23, pp. 4701–4710, 2015. View at: Publisher Site | Google Scholar
  156. F. Xia, S. Xiong, Y. He, Z. Shao, X. Zhang, and J. Jie, “Tuning the electronic and optical properties of monolayers as, Sb, and bi via surface charge transfer doping,” The Journal of Physical Chemistry C, vol. 121, no. 35, pp. 19530–19537, 2017. View at: Publisher Site | Google Scholar
  157. M. M. R. Moayed, T. Bielewicz, H. Noei, A. Stierle, and C. Klinke, “High-performance n- and p-type field-effect transistors based on hybridly surface-passivated colloidal PbS nanosheets,” Advanced Functional Materials, vol. 28, no. 19, article 1706815, 2018. View at: Publisher Site | Google Scholar
  158. S. Lee, C. Yoon, J. H. Lee et al., “Enhanced performance of field-effect transistors based on black phosphorus channels reduced by galvanic corrosion of Al overlayers,” ACS Applied Materials & Interfaces, vol. 10, no. 22, pp. 18895–18901, 2018. View at: Publisher Site | Google Scholar
  159. W. Dickerson, V. Tayari, I. Fakih et al., “Phosphorus oxide gate dielectric for black phosphorus field effect transistors,” Applied Physics Letters, vol. 112, no. 17, article 173101, 2018. View at: Publisher Site | Google Scholar
  160. D. H. Kwak, H. S. Ra, J. Yang et al., “Recovery mechanism of degraded black phosphorus field-effect transistors by 1,2-ethanedithiol chemistry and extended device stability,” Small, vol. 14, no. 6, article 1703194, 2018. View at: Publisher Site | Google Scholar
  161. X. Li, J. Wu, Y. Ye et al., “Performance and reliability improvement under high current densities in black phosphorus transistors by interface engineering,” ACS Applied Materials & Interfaces, vol. 11, no. 1, pp. 1587–1594, 2019. View at: Publisher Site | Google Scholar
  162. L. Wang, W. Liao, S. Xu, X. Gong, C. Zhu, and K.-W. Ang, “Unipolar n-type conduction in black phosphorus induced by atomic layer deposited MgO,” IEEE Electron Device Letters, vol. 40, no. 3, pp. 471–474, 2019. View at: Publisher Site | Google Scholar
  163. Y. Zheng, Z. Hu, C. Han et al., “Black phosphorus inverter devices enabled by in-situ aluminum surface modification,” Nano Research, vol. 12, no. 3, pp. 531–536, 2018. View at: Publisher Site | Google Scholar
  164. H. S. Ra, A. Y. Lee, D. H. Kwak, M. H. Jeong, and J. S. Lee, “Dual-gate black phosphorus field-effect transistors with hexagonal boron nitride as dielectric and passivation layers,” ACS Applied Materials & Interfaces, vol. 10, no. 1, pp. 925–932, 2018. View at: Publisher Site | Google Scholar
  165. B. Wan, Q. Zhou, J. Zhang et al., “Enhanced stability of black phosphorus field-effect transistors via hydrogen treatment,” Advanced Electronic Materials, vol. 4, no. 2, article 1700455, 2018. View at: Publisher Site | Google Scholar
  166. X. Feng, L. Wang, X. Huang, L. Chen, and K. W. Ang, “Complementary black phosphorus nanoribbons field-effect transistors and circuits,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4122–4128, 2018. View at: Publisher Site | Google Scholar
  167. A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nature Materials, vol. 14, pp. 1195–1205, 2015. View at: Publisher Site | Google Scholar
  168. F. Gao, H. Yang, and P. Hu, “Interfacial engineering for fabricating high-performance field-effect transistors based on 2D materials,” Small Methods, vol. 2, no. 6, article 1700384, 2018. View at: Publisher Site | Google Scholar
  169. Z. Cheng, K. Price, and A. D. Franklin, “Contacting and gating 2-D nanomaterials,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4073–4083, 2018. View at: Publisher Site | Google Scholar
  170. D. S. Schulman, A. J. Arnold, and S. Das, “Contact engineering for 2D materials and devices,” Chemical Society Reviews, vol. 47, no. 9, pp. 3037–3058, 2018. View at: Publisher Site | Google Scholar
  171. A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model,” Nature Communications, vol. 6, no. 1, article 8948, 2015. View at: Publisher Site | Google Scholar
  172. M. V. Kamalakar, B. N. Madhushankar, A. Dankert, and S. P. Dash, “Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts,” Small, vol. 11, no. 18, pp. 2209–2216, 2015. View at: Publisher Site | Google Scholar
  173. G. Wang, L. Bao, T. Pei et al., “Introduction of interfacial charges to black phosphorus for a family of planar devices,” Nano Letters, vol. 16, no. 11, pp. 6870–6878, 2016. View at: Publisher Site | Google Scholar
  174. A. Avsar, J. Y. Tan, X. Luo et al., “van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices,” Nano Letters, vol. 17, no. 9, pp. 5361–5367, 2017. View at: Publisher Site | Google Scholar
  175. J. Li, X. Sun, C. Xu et al., “Electrical contacts in monolayer blue phosphorene devices,” Nano Research, vol. 11, no. 4, pp. 1834–1849, 2018. View at: Publisher Site | Google Scholar
  176. K. Hirose, T. Osada, K. Uchida et al., “Double carrier transport in electron-doped region in black phosphorus FET,” Applied Physics Letters, vol. 113, no. 19, article 193101, 2018. View at: Publisher Site | Google Scholar
  177. F. Yang, Z. Zhang, N. Z. Wang et al., “Quantum hall effect in electron-doped black phosphorus field-effect transistors,” Nano Letters, vol. 18, no. 10, pp. 6611–6616, 2018. View at: Publisher Site | Google Scholar
  178. Y. Pan, Y. Wang, M. Ye et al., “Monolayer phosphorene-metal contacts,” Chemistry of Materials, vol. 28, no. 7, pp. 2100–2109, 2016. View at: Publisher Site | Google Scholar
  179. R. Quhe, Y. Wang, M. Ye et al., “Black phosphorus transistors with van der Waals-type electrical contacts,” Nanoscale, vol. 9, no. 37, pp. 14047–14057, 2017. View at: Publisher Site | Google Scholar
  180. R. Quhe, X. Peng, Y. Pan et al., “Can a black phosphorus Schottky barrier transistor be good enough?” ACS Applied Materials & Interfaces, vol. 9, no. 4, pp. 3959–3966, 2017. View at: Publisher Site | Google Scholar
  181. Y. Pan, Y. Dan, Y. Wang et al., “Schottky barriers in bilayer phosphorene transistors,” ACS Applied Materials & Interfaces, vol. 9, no. 14, pp. 12694–12705, 2017. View at: Publisher Site | Google Scholar
  182. X. Zhang, Y. Pan, M. Ye et al., “Three-layer phosphorene-metal interfaces,” Nano Research, vol. 11, no. 2, pp. 707–721, 2018. View at: Publisher Site | Google Scholar
  183. Y. Wang, M. Ye, M. Weng et al., “Electrical contacts in monolayer arsenene devices,” ACS Applied Materials & Interfaces, vol. 9, no. 34, pp. 29273–29284, 2017. View at: Publisher Site | Google Scholar
  184. Z. P. Ling, S. Sakar, S. Mathew et al., “Black phosphorus transistors with near band edge contact Schottky barrier,” Scientific Reports, vol. 5, no. 1, article 18000, 2015. View at: Publisher Site | Google Scholar
  185. L. Li, M. Engel, D. B. Farmer, S. J. Han, and H. S. P. Wong, “High-performance p-type black phosphorus transistor with scandium contact,” ACS Nano, vol. 10, no. 4, pp. 4672–4677, 2016. View at: Publisher Site | Google Scholar
  186. H.-M. Chang, K.-L. Fan, A. Charnas et al., “Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors,” Journal of Physics D: Applied Physics, vol. 51, no. 13, article 135306, 2018. View at: Publisher Site | Google Scholar
  187. N. Haratipour, S. Namgung, R. Grassi, T. Low, S.-H. Oh, and S. J. Koester, “High-performance black phosphorus MOSFETs using crystal orientation control and contact engineering,” IEEE Electron Device Letters, vol. 38, no. 5, pp. 685–688, 2017. View at: Publisher Site | Google Scholar
  188. B. Jiang, X. Zou, J. Su et al., “Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors,” Advanced Functional Materials, vol. 28, no. 26, article 1801398, 2018. View at: Publisher Site | Google Scholar
  189. C. H. Wang, J. A. C. Incorvia, C. J. McClellan et al., “Unipolar n-type black phosphorus transistors with low work function contacts,” Nano Letters, vol. 18, no. 5, pp. 2822–2827, 2018. View at: Publisher Site | Google Scholar
  190. N. Oliva, E. A. Casu, W. A. Vitale, I. Stolichnov, and A. M. Ionescu, “Polarity control of top gated black phosphorous FETs by workfunction engineering of pre-patterned Au and Ag embedded electrodes,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 1041–1047, 2018. View at: Publisher Site | Google Scholar
  191. K. Gong, L. Zhang, W. Ji, and H. Guo, “Electrical contacts to monolayer black phosphorus: a first-principles investigation,” Physical Review B, vol. 90, no. 12, article 125441, 2014. View at: Publisher Site | Google Scholar
  192. L. Teitz and M. C. Toroker, “Theoretical investigation of dielectric materials for two-dimensional field-effect transistors,” Advanced Functional Materials, vol. 29, no. article 1808544, 2019. View at: Publisher Site | Google Scholar
  193. L. M. Yang, G. Qiu, M. W. Si et al., “Few-layer black phosporous PMOSFETs with Bn/Ai2o3 bilayer gate dielectric: achieving Ion=850μA/Μm, Gm=340μs/Μm, and Rc=0.58kΩ·μm,” in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 5.5.1–5.5.4, San Francisco, CA, USA, December 2016. View at: Publisher Site | Google Scholar
  194. H. Liu, A. T. Neal, M. Si, Y. Du, and P. D. Ye, “The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights,” IEEE Electron Device Letters, vol. 35, no. 7, pp. 795–797, 2014. View at: Publisher Site | Google Scholar
  195. N. Haratipour, Y. Liu, R. J. Wu et al., “Mobility anisotropy in black phosphorus MOSFETs with HfO2 gate dielectrics,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4093–4101, 2018. View at: Publisher Site | Google Scholar
  196. C. D. Liang, R. Ma, Y. Su et al., “Defects and low-frequency noise in irradiated black phosphorus MOSFETs with HfO2 gate dielectrics,” IEEE Transactions on Nuclear Science, vol. 65, no. 6, pp. 1227–1238, 2018. View at: Publisher Site | Google Scholar
  197. X. Xiong, X. Li, M. Huang, T. Li, T. Gao, and Y. Wu, “High performance black phosphorus electronic and photonic devices with HfLaO dielectric,” IEEE Electron Device Letters, vol. 39, no. 1, pp. 127–130, 2018. View at: Publisher Site | Google Scholar
  198. F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang, and H. Guo, “Negative capacitance transistors with monolayer black phosphorus,” npj Quantum Materials, vol. 1, no. 1, article 16004, 2016. View at: Publisher Site | Google Scholar
  199. Y. T. Lee, H. Kwon, J. S. Kim et al., “Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(Vdf-Trfe) polymer,” ACS Nano, vol. 9, no. 10, pp. 10394–10401, 2015. View at: Publisher Site | Google Scholar
  200. H. Tian, Y.-X. Li, L. Li et al., “Negative capacitance black phosphorus transistors with low SS,” IEEE Transactions on Electron Devices, vol. 66, no. 3, pp. 1579–1583, 2019. View at: Publisher Site | Google Scholar
  201. Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, and Y. Iwasa, “Gate-tuned thermoelectric power in black phosphorus,” Nano Letters, vol. 16, no. 8, pp. 4819–4824, 2016. View at: Publisher Site | Google Scholar
  202. G. Gao, B. Wan, X. Liu et al., “Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus,” Advanced Materials, vol. 30, no. 13, article 1705088, 2018. View at: Publisher Site | Google Scholar
  203. J. S. Kim, P. J. Jeon, J. Lee et al., “Dual gate black phosphorus field effect transistors on glass for nor logic and organic light emitting diode switching,” Nano Letters, vol. 15, no. 9, pp. 5778–5783, 2015. View at: Publisher Site | Google Scholar
  204. P. Wu, T. Ameen, H. Zhang et al., “Complementary black phosphorus tunneling field-effect transistors,” ACS Nano, vol. 13, no. 1, pp. 377–385, 2019. View at: Publisher Site | Google Scholar

Copyright © 2019 Wenhan Zhou et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).

 PDF Download Citation Citation
Views1896
Downloads965
Altmetric Score
Citations