Lemma 10.36.18. Let $R$ be a ring. Let $K$ be a field. If $R \subset K$ and $K$ is integral over $R$, then $R$ is a field and $K$ is an algebraic extension. If $R \subset K$ and $K$ is finite over $R$, then $R$ is a field and $K$ is a finite algebraic extension.

**Proof.**
Assume that $R \subset K$ is integral. By Lemma 10.36.17 we see that $\mathop{\mathrm{Spec}}(R)$ has $1$ point. Since clearly $R$ is a domain we see that $R = R_{(0)}$ is a field (Lemma 10.25.1). The other assertions are immediate from this.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)