|
Type of models | Year | Species | Method | Gene | Stages | Samples | Implanted blastocysts | Pregnancy rate | Total neonatus | Models | Mutation rate | Contribution | Author/reference |
|
Viral vector-mediated transgenic | 2001 | Rhesus monkeys | Retroviral vector | GFP | Mature oocytes | 224 oocytes | 40 | | 3 | 1 | 33% | The first transgenic monkey | Chan et al. [17] |
2008 | Rhesus monkeys | Lentivirus vector | HTT-84Q and GFP | Mature oocytes | 130 oocytes | 30 | | 5 | 5 | 100% | The first monkey model of HD | Yang et al. [23] |
2009 | Common marmosets | Lentiviral vector | EGFP | Preimplantation embryos | 201 embryos | 91 | | 5 | 5 | 100% | The first germline transmission | Sasaki et al. [18] |
2010 | Rhesus monkeys | Lentiviral vector | EGFP | Early cleavage-stage embryos | 70 embryos | 30 | | 5 | 2 | 40% | The first transgenic monkey in China | Niu et al. [26] |
2015 | Rhesus monkeys | Lentiviral vector | α-Syn (A53T) | Mature oocytes | 133 oocytes | 75 | | 7 | 6 | 86% | The first monkey model of PD | Niu et al. [27] |
2016 | Cynomolgus monkeys | Lentiviral vector | MECP2 | Mature oocytes | First: 94 oocytes; second: 264 oocytes | 53 105 | ; | 8; 2 | Total 8 | 80% | The monkey model of autism-like disease | Liu et al. [28] |
2016 | Cynomolgus monkeys | Lentiviral vector | GFP | 24 hours after ICSI; 4 hours before ICSI | 18; 69 | 5; 17 | ; | 0; 2 | 0; 2 | 0%; 100% | Construction of cynomolgus monkeys expressing GFP | Seita et al. [25] |
2019 | Rhesus monkeys | Lentivirus vector | MCPH1 | Early cleavage-stage embryos | — | — | — | 6 | 6 | 100% | The huMCPH1 transgenic monkey | Shi et al. [30] |
|
TALEN or ZFN knockout | 2014 | Rhesus monkeys and cynomolgus monkeys | TALEN | MECP2 | One-cell embryos | Rhesus: 59 embryos cynomolgus: 86 embryos | 21; 54 | ; | 0; 1 | Total 4 | — | The first monkey model of RTT; the first monkey model of TALEN | Liu et al. [33] |
2017 | Cynomolgus monkeys | TALEN | MECP2 | One-cell embryos | 123 embryos | 123 | | 7 | 6 | 86% | Research on RTT | Chen et al. [34] |
2016 | Cynomolgus monkeys | TALEN | MCPH1 | Embryos | 55 embryos | 52 | | 3 | 1 | 33% | The first monkey model of human microcephaly | Ke et al. [19] |
2016 | Common marmosets | ZFN and TALEN | IL2RG | Pronuclear stage embryos | 250 embryos | 179 | | 21 | 9 | 43% | The first monkey model of ZFN; the first monkey model of X-SCID | Sato et al. [35] |
|
CRISPR/Cas9 knockout | 2014 | Cynomolgus monkeys | CRISPR/Cas9 | Pparg and Rag1 | One-cell embryos | 186 zygotes | 83 | | 5 | 2 | 40% | The first monkey model of CRISPR/Cas9 | Niu et al. [36, 37] |
2015 | Cynomolgus monkeys | CRISPR/Cas9 | P53 | Zygotes | 108 zygotes | 62 | | 3 | 2 | 67% | The first live p53 biallelic mutant monkey | Wan et al. [20] |
2015 | Rhesus monkeys | CRISPR/Cas9 | Dystrophin | Zygotes | 488 embryos | 179 | | 14 | 9 | 64% | The first monkey model of DMD | Chen et al. [38] |
2015 | Cynomolgus monkeys | CRISPR/Cas9 | Nr0b1 (Dax1) | One-cell embryos | 186 zygotes | 83 | | 5 | — | — | The first monkey model of AHC-HH | Kang et al. [39] |
2017 | Cynomolgus monkeys | CRISPR/Cas9 | SHANK3 | One-cell embryos | 116 embryos | 116 | | 1 | 1 | 100% | The first monkey model of ASD | Zhao et al. [45] |
2018 | Cynomolgus monkeys | CRISPR/Cas9 | SIRT6 | Zygotes | 98 zygotes | 48 | | 3 | 3 | 100% | The first monkey model of perinatal lethality syndrome | Zhang et al. [46] |
2019 | Cynomolgus monkeys | CRISPR/Cas9 | SHANK3 | Embryos | 178 embryos | 178 | | 9 | 5 | 56% | Monkey model of ASD and Phelan–McDermid syndrome | Zhou et al. [47] |
2019 | Cynomolgus monkeys | CRISPR/Cas9 | BMAL1 | Zygotes | 88 embryos | 88 | | 8 | 5 | 63% | The first monkey model of circadian and psychiatric disorders | Qiu et al. [48] |
2019 | Cynomolgus monkeys | CRISPR/Cas9 | PKD1 | Embryos | 423 embryos | 86 | | 14 | 19 | — | The first monkey model of ADPKD | Tsukiyama et al. [49] |
2019 | Rhesus monkeys | CRISPR/Cas9 | PINK1 | One-cell embryos | 158 embryos | 87 | | 11 | 8 | 73% | Monkey model of PD | Yang et al. [50] |
2019 | Cynomolgus monkeys | CRISPR/Cas9 | HBB | Zygotes | 97 zygotes | 22 | — | 1 | 1 | 100% | The first monkey model of human β-thalassemia | Huang et al. [51] |
2019 | Rhesus monkeys | CRISPR/Cas9 | SHANK3 | Pronuclear-stage embryos | mRNA: 22; nuclease: 26 | Editing efficiency: mRNA:80%; nuclease:100% | KI/KO efficiency verified at embryo level | Kumita et al. [54] |
c-kit | Pronuclear stage embryos | mRNA: 20; nuclease: 25 | Editing efficiency: mRNA:77.8%; nuclease:100% |
|
CRISPR/Cas9 knockin | 2017 | Cynomolgus monkeys | CRISPR/Cas9 | mCherry | Zygotes | First: 26; second: 10 | First (high-concentration HMEJ donor): 4/5 mCherry+ blastocysts; second (low-concentration HMEJ donor): 1/4 mCherry+ blastocysts | Verified HMEJ-based knockin at the embryo level | Yao et al. [55] |
2018 | Cynomolgus monkeys | CRISPR/Cas9 | Oct4-GFP | Zygotes | 198 zygotes | 120 | | 8 | 1 | 13% | The first monkey model of KI | Cui et al. [56] |
2019 | Rhesus monkeys | CRISPR/Cas9 | c-kit | Pronuclear stage embryos | 40 embryos | Optimal injection combination: 36 nt sense ssODN and CRISPR/nuclease mixture; editing efficiency: 30.8% | KI/KO efficiency verified at embryo level | Kumita et al. [54] |
|
Chimera embryo | 2015 | Cynomolgus monkeys | Retroviral vector | GFP | ESC | — | 14 | | 0 | 2 | — | The first monkey chimeras | Chen et al. [22] |
|
SCNT | 2018 | Cynomolgus monkeys | — | — | — | — | — | | 2 | 2 | 100% | The first monkey model of SCNT | Liu et al. [16] |
2019 | Cynomolgus monkeys | — | — | — | — | 325 | | 5 | 5 | 100% | The first disease monkey model of SCNT | Liu et al. [64] |
|
BE point mutation | 2020 | Cynomolgus monkeys | CBE | LMNA | Zygotes | 86 zygotes | 41 | | 5 | 4 | 80% | The first monkey model of BE | Wang et al. [60] |
2020 | Rhesus monkeys | CBE | MECP2 | Zygotes | — | Embryo level | Established a stable embryo editing system of RTT | Zhou et al. [62] |
2020 | Cynomolgus monkeys | CBE and ABE | Multiple loci | Zygotes | — | Embryo level | Simultaneously edit multiple loci at the embryo level | Zhang et al. [63] |
|