Applicability of the Liability Convention for Private Spaceflight

Read the full article

Journal profile

Open Access journal Space: Science & Technology, published in association with BIT, promotes the interplay of science and technology for the benefit of all application domains of space activities. It particularly welcomes articles illustrating successful synergies in space programs and missions.

Editorial board

Space: Science & Technology’s editorial board is led by Peijian Ye (China Academy of Space Technology), and it includes experts who have been carefully selected to include all domains of sciences and technologies covered by space missions of different types.

Special Issue

Space: Science &Technology is now considering submissions for the following special issues:

 

Space Robot

Deadline: May 31, 2021

 

Artificial Intelligence in Space Weather Forecast

Deadline: Dec 31, 2021

Latest Articles

More articles
Review Article

Development and Prospect of Chinese Lunar Relay Communication Satellite

Relay communication satellites play a very important role on the lunar far side and pole areas exploration missions. Queqiao relay communication satellite was developed to provide relay communication support for the lander and the rover of Chang’e-4 mission landing on the far side of the Moon. From entering into the halo mission orbit around Earth-Moon libration point 2 on June 14, 2018, it has operated on the orbit more than thirty months. It worked very well and provided reliable, continuous relay communication support for the lander and the rover to accomplish the goals of Chang’e-4 lunar far side soft landing and patrol exploration mission. Exploration of the lunar south polar regions is of high scientific interest. A new relay communication satellite for Chinese south pole exploration mission is also under study. The system design and on-orbit operation status of Queqiao relay communication satellite were summarized in this paper. The system concept of the relay communication satellite for lunar south pole exploration missions is proposed. Finally, the future development and prospect of the lunar relay communication satellite system are given.

Research Article

A Hybrid Power System for a Permanent Colony on Mars

Since the dawn of humanity, people have contemplated the sky exploring the firmament. However, it was not until the twentieth century that humans were able to leave Earth and visit other celestial objects. In fact, nowadays, rovers roam Mars on a daily basis pushing the limits of science in a seemingly routine fashion. It is just a matter of time before humanity sets foot on the red planet with the aim of establishing a permanent colony. Such a complex endeavour demands continuous research, simulation, and planning. Consequently, this paper is aimed at starting a proper discussion about the configuration and design of a suitable power system for said Martian outpost. An initial literature review leads to the definition of a reference colony and its growing stages, which is followed by a revision of available energy-related technologies leading to a concrete design of a suitable electrical network. Lastly, the proposed hybrid power system is evaluated in terms of its reliability during the long-term operation under the extreme environmental conditions of Mars. The reference colony starts as an unmanned mission, as robots will prepare the selected location for the first human inhabitants. Later, it suffers several upgrades in size reaching a permanent population of 100 people. Therefore, a holistic approach is needed when designing the power system in order to ensure the continuous supply of the colony. Finally, the selected topology of the colony’s power system is presented.

Perspective

Advances in Space Medicine Applied to Pandemics on Earth

Preparation and planning are critical when facing an epidemic or pandemic. Timely solutions must be incorporated in addition to existing guidelines in the case of a fast-spreading epidemic. Advances in space health have been driven by the need to preserve human health in an austere environment, in which medical assistance or resupply from the ground is not possible. This paper speculates on the similarities between human spaceflight and epidemics, extended to pandemics, identifying implementable solutions for immediate use by healthcare personnel and healthcare systems. We believe aerospace medical research can be seen as a resource to improve terrestrial medical care and the management of patients on Earth.

Review Article

Biosphere 2’s Lessons about Living on Earth and in Space

Biosphere 2, the largest and most biodiverse closed ecological system facility yet created, has contributed vital lessons for living with our planetary biosphere and for long-term habitation in space. From the space life support perspective, Biosphere 2 contrasted with previous BLSS work by including areas based on Earth wilderness biomes in addition to its provision for human life support and by using a soil-based intensive agricultural system producing a complete human diet. No previous BLSS system had included domestic farm animals. All human and domestic animal wastes were also recycled and returned to the crop soils. Biosphere 2 was important as a first step towards learning how to miniaturize natural ecosystems and develop technological support systems compatible with life. Biosphere 2’s mostly successful operation for three years (1991-1994) changed thinking among space life support scientists and the public at large about the need for minibiospheres for long-term habitation in space. As an Earth systems laboratory, Biosphere 2 was one of the first attempts to make ecology an experimental science at a scale relevant to planetary issues such as climate change, regenerative agriculture, nutrient and water recycling, loss of biodiversity, and understanding of the roles wilderness biomes play in the Earth’s biosphere. Biosphere 2 aroused controversy because of narrow definitions and expectations of how science is to be conducted. The cooperation between engineers and ecologists and the requirement to design a technosphere that supported the life inside without harming it have enormous relevance to what is required in our global home. Applications of bioregenerative life support systems for near-term space applications such as initial Moon and/or Mars bases, will be severely limited by high costs of transport to space and so will rely on lighter weight, hydroponic systems of growing plants which will focus first on water and air regeneration and gradually increase its production of food required by astronauts or inhabitants. The conversion of these systems to more robust and sustainable systems will require advanced technologies, e.g., to capture sunlight for plant growth or process usable materials from the lunar or Martian atmosphere and regolith, leading to greater utilization of in situ space resources and less on transport from Earth. There are many approaches to the accomplishment of space life support. Significant progress has been made especially by two research efforts in China and the MELiSSA project of the European Space Agency. These approaches use cybernetic controls and the integration of intensive modules to accomplish food production, waste treatment and recycling, atmospheric regeneration, and in some systems, high-protein production from insects and larvae. Biosphere 2 employed a mix of ecological self-organization and human intervention to protect biodiversity for wilderness biomes with a tighter management of food crops in its agriculture. Biosphere 2’s aims were different than bioregenerative life support systems (BLSS) which have focused exclusively on human life support. Much more needs to be learned from both smaller, efficient ground-based BLSS for nearer-term habitation and from minibiospheric systems for long-term space application to transform humanity and Earth-life into truly multiplanet species.

Review Article

Applications of Vacuum Measurement Technology in China’s Space Programs

The significance of vacuum measurement technology is increasingly prominent in China’s thriving space industry. Lanzhou Institute of Physics (LIP) has been dedicated to the development of payloads and space-related vacuum technology for decades, and widely participated in China’s space programs. In this paper, we present several payloads carried on satellites, spaceships, and space stations; the methodologies of which covered the fields of total and partial pressure measurement, vacuum and pressure leak detection, and standard gas inlet technology. Then, we introduce the corresponding calibration standards developed in LIP, which guaranteed the detection precision of these payloads. This review also provides some suggestions and expectations for the future development and application of vacuum measurement technology in space exploration.

Review Article

Ground- and Space-Based Observation of Kordylewski Clouds

The ghost dust clouds in the vicinity of Earth-Moon triangular libration points are known as the “Kordylewski clouds” (KDCs). Objects in the KDCs may give hints to the physical, chemical, and dynamical properties of the solar system. As a result, in situ exploration of the KDCs can help us understand the evolution of our solar system. This paper first summarizes the observation history of the KDCs. Based on the properties of the KDCs, a ground- and space-based observation concept is proposed, using the CAST 100 platform developed by DFH and ground stations. Some details of the concept are exploited.