The Tianwen-1 Guidance, Navigation, and Control for Mars Entry, Descent, and Landing

Read the full article

Journal profile

Open Access journal Space: Science & Technology, published in association with BIT, promotes the interplay of science and technology for the benefit of all application domains of space activities. It particularly welcomes articles illustrating successful synergies in space programs and missions.

Editorial board

Space: Science & Technology’s editorial board is led by Peijian Ye (China Academy of Space Technology), and it includes experts who have been carefully selected to include all domains of sciences and technologies covered by space missions of different types.

Latest Articles

More articles
Research Article

A Bridge Neural Network-Based Optical-SAR Image Joint Intelligent Interpretation Framework

The current interpretation technology of remote sensing images is mainly focused on single-modal data, which cannot fully utilize the complementary and correlated information of multimodal data with heterogeneous characteristics, especially for synthetic aperture radar (SAR) data and optical imagery. To solve this problem, we propose a bridge neural network- (BNN-) based optical-SAR image joint intelligent interpretation framework, optimizing the feature correlation between optical and SAR images through optical-SAR matching tasks. It adopts BNN to effectively improve the capability of common feature extraction of optical and SAR images and thus improving the accuracy and application scenarios of specific intelligent interpretation tasks for optical-SAR/SAR/optical images. Specifically, BNN projects optical and SAR images into a common feature space and mines their correlation through pair matching. Further, to deeply exploit the correlation between optical and SAR images and ensure the great representation learning ability of BNN, we build the QXS-SAROPT dataset containing 20,000 pairs of perfectly aligned optical-SAR image patches with diverse scenes of high resolutions. Experimental results on optical-to-SAR crossmodal object detection demonstrate the effectiveness and superiority of our framework. In particular, based on the QXS-SAROPT dataset, our framework can achieve up to 96% high accuracy on four benchmark SAR ship detection datasets.

Research Article

A Light Space Manipulator with High Load-to-Weight Ratio: System Development and Compliance Control

In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator, this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg. It adopts the EtherCAT communication protocol and has the characteristics of high load-to-weight ratio. In order to achieve constant force tracking under the condition of unknown environmental parameters, an integral adaptive admittance control method is proposed. The control law is expressed as a third-order linear system equation, the operating environment is equivalent to a spring model, and the control error transfer function is derived. The control performance under the step response is further analyzed. The simulation results show that the proposed integral adaptive admittance control method has better performance than the traditional method. It has no steady-state error, overcomes the problems caused by nonlinear discrete compensation, and can facilitate analysis in the frequency domain, realize parameter optimization, and improve calculation accuracy.

Research Article

Research on a Visual Servo Method of a Manipulator Based on Velocity Feedforward

In this paper, a method of predicting the motion state of a moving target in the base coordinate system by hand-eye vision and the position and attitude of the end is proposed. The predicted value is used as the velocity feedforward, and the position-based visual servo method is used to plan the velocity of the end of the manipulator. It overcomes the influence of end coordinate system motion on target prediction in a discrete system and introduces an integral control method to compensate for the prediction velocity, eliminating the end tracking error caused by target velocity prediction error. The effectiveness of this method is verified by simulation and experiment.

Research Article

Nuclear Processes in Dark Interstellar Matter of H(0) Decrease the Hope of Migrating to Exoplanets

It is still generally assumed that interstellar travel will be possible after purely technical development and thus that mankind can move to some suitable exoplanet when needed. However, recent research indicates this not to be the case, since interstellar space is filled with enough ultradense hydrogen H(0) as stable condensed dark matter (Holmlid, Astrophysical Journal 2018) to make interstellar space travel at the required and technically feasible relativistic velocities (Holmlid et al, Acta Astronautica 2020) almost impossible. H(0) can be observed to exist in space from the so-called extended red emission (ERE) features observed in space. A recent review (Holmlid et al., Physica Scripta 2019) describes the properties of H(0). H(0) gives nuclear processes emitting kaons and other particles, with kinetic energies even above 100 MeV after induction for example by fast particle (spaceship) impact. These high particle energies give radiative temperatures of 12000 K in collisions against a solid surface and will rapidly destroy any spaceship structure moving into the H(0) clouds at relativistic velocity. The importance of preserving our ecosystem is pointed out, since travel to suitable exoplanets may be impossible. The possibilities of instead clearing interstellar space from H(0) are discussed, eventually providing tunnels suitable for relativistic interstellar transport. Finding regions with low intensity of ERE could even be a way to identify space-cleaning activities and thus to locate earlier space-travelling civilizations.

Research Article

Design and Realization of Recovery System of Chang’e-5 Reentry Spacecraft

On December 17, 2020, the Chang’e-5 reentry spacecraft landed safely and brought back the lunar sample without damage. This paper describes the recovery system that has critically contributed to the scientific success of the Chang’e-5 missions and presents the technical requirements and constraints of the recovery system for the Chang’e-5 reentry spacecraft and discusses the design process of the recovery system, including the system composition, working procedure, and some other key aspects. Finally, the ground cover rejection tests and air drop and flight tests were carried out to confirm the design configuration. The results showed that the Chang’e-5 reentry spacecraft recovery system was designed correctly, and its functions and performances met the design requirements. A breakthrough in the recovery technology of the reentry spacecraft was achieved for Chinese first lunar sample-return mission.

Research Article

A High-Efficient Finite Difference Method for Flexible Manipulator with Boundary Feedback Control

The paper presents a high-efficient finite difference method for solving the PDE model of the single-link flexible manipulator system with boundary feedback control. Firstly, an abstract state-space model of the manipulator is derived from the original PDE model and the associated boundary conditions of the manipulator by using the velocity and bending curvature of the flexible link as the state variables. Then, the second-order implicit Crank-Nicolson scheme is adopted to discretize the state-space equation, and the second-order one-sided approximation is used to discretize the boundary conditions with excitations and feedback control. At last, the state-space equation combined with the boundary conditions of the flexible manipulator is transformed to a system of linear algebraic equations, from which the response of the flexible manipulator can be easily solved. Numerical simulations are carried out to simulate the manipulator under various excitations and boundary feedback control. The results are compared with ANSYS to demonstrate the accuracy and high efficiency of the presented method.