Research on a Visual Servo Method of a Manipulator Based on Velocity Feedforward

Read the full article

Journal profile

Open Access journal Space: Science & Technology, published in association with BIT, promotes the interplay of science and technology for the benefit of all application domains of space activities. It particularly welcomes articles illustrating successful synergies in space programs and missions.

Editorial board

Space: Science & Technology’s editorial board is led by Peijian Ye (China Academy of Space Technology), and it includes experts who have been carefully selected to include all domains of sciences and technologies covered by space missions of different types.

Latest Articles

More articles
Research Article

Nuclear Processes in Dark Interstellar Matter of H(0) Decrease the Hope of Migrating to Exoplanets

It is still generally assumed that interstellar travel will be possible after purely technical development and thus that mankind can move to some suitable exoplanet when needed. However, recent research indicates this not to be the case, since interstellar space is filled with enough ultradense hydrogen H(0) as stable condensed dark matter (Holmlid, Astrophysical Journal 2018) to make interstellar space travel at the required and technically feasible relativistic velocities (Holmlid et al, Acta Astronautica 2020) almost impossible. H(0) can be observed to exist in space from the so-called extended red emission (ERE) features observed in space. A recent review (Holmlid et al., Physica Scripta 2019) describes the properties of H(0). H(0) gives nuclear processes emitting kaons and other particles, with kinetic energies even above 100 MeV after induction for example by fast particle (spaceship) impact. These high particle energies give radiative temperatures of 12000 K in collisions against a solid surface and will rapidly destroy any spaceship structure moving into the H(0) clouds at relativistic velocity. The importance of preserving our ecosystem is pointed out, since travel to suitable exoplanets may be impossible. The possibilities of instead clearing interstellar space from H(0) are discussed, eventually providing tunnels suitable for relativistic interstellar transport. Finding regions with low intensity of ERE could even be a way to identify space-cleaning activities and thus to locate earlier space-travelling civilizations.

Research Article

Design and Realization of Recovery System of Chang’e-5 Reentry Spacecraft

On December 17, 2020, the Chang’e-5 reentry spacecraft landed safely and brought back the lunar sample without damage. This paper describes the recovery system that has critically contributed to the scientific success of the Chang’e-5 missions and presents the technical requirements and constraints of the recovery system for the Chang’e-5 reentry spacecraft and discusses the design process of the recovery system, including the system composition, working procedure, and some other key aspects. Finally, the ground cover rejection tests and air drop and flight tests were carried out to confirm the design configuration. The results showed that the Chang’e-5 reentry spacecraft recovery system was designed correctly, and its functions and performances met the design requirements. A breakthrough in the recovery technology of the reentry spacecraft was achieved for Chinese first lunar sample-return mission.

Research Article

A High-Efficient Finite Difference Method for Flexible Manipulator with Boundary Feedback Control

The paper presents a high-efficient finite difference method for solving the PDE model of the single-link flexible manipulator system with boundary feedback control. Firstly, an abstract state-space model of the manipulator is derived from the original PDE model and the associated boundary conditions of the manipulator by using the velocity and bending curvature of the flexible link as the state variables. Then, the second-order implicit Crank-Nicolson scheme is adopted to discretize the state-space equation, and the second-order one-sided approximation is used to discretize the boundary conditions with excitations and feedback control. At last, the state-space equation combined with the boundary conditions of the flexible manipulator is transformed to a system of linear algebraic equations, from which the response of the flexible manipulator can be easily solved. Numerical simulations are carried out to simulate the manipulator under various excitations and boundary feedback control. The results are compared with ANSYS to demonstrate the accuracy and high efficiency of the presented method.

Research Article

Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net

Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions.

Research Article

Knowledge Graph-Based Image Recognition Transfer Learning Method for On-Orbit Service Manipulation

Visual perception provides state information of current manipulation scene for control system, which plays an important role in on-orbit service manipulation. With the development of deep learning, deep convolutional neural networks (CNNs) have achieved many successful applications in the field of visual perception. Deep CNNs are only effective for the application condition containing a large number of training data with the same distribution as the test data; however, real space images are difficult to obtain during large-scale training. Therefore, deep CNNs can not be directly adopted for image recognition in the task of on-orbit service manipulation. In order to solve the problem of few-shot learning mentioned above, this paper proposes a knowledge graph-based image recognition transfer learning method (KGTL), which learns from training dataset containing dense source domain data and sparse target domain data, and can be transferred to the test dataset containing large number of data collected from target domain. The average recognition precision of the proposed method is 80.5%, and the average recall is 83.5%, which is higher than that of ResNet50-FC; the average precision is 60.2%, and the average recall is 67.5%. The proposed method significantly improves the training efficiency of the network and the generalization performance of the model.

Research Article

Guidance Navigation and Control for Chang’E-5 Powered Descent

To achieve the goal of collecting lunar samples and return to the Earth for the Chang’E-5 spacecraft, the lander and ascender module (LAM) of the Chang’E-5 spacecraft successfully landed on the lunar surface on 1 Dec., 2020. The guidance, navigation, and control (GNC) system is one of the critical systems to perform this task. The GNC system of previous missions, Chang’E-3 and Chang’E-4, provides the baseline design for the Chang’E-5 LAM, and the new characteristics of the LAM, like larger mass and liquid sloshing, also bring new challenges for the GNC design. The GNC design for the descent and landing is presented in this paper. The guidance methods implemented in the powered descent are presented in detail for each phase. Propellant consumption and hazard avoidance should be particularly considered in the design. A reconfigurable attitude control is adopted which consists of the quaternion partition control, phase and gain stabilization filter, and dual observer. This controller could provide fast attitude maneuver and better system robustness. For the navigation, an intelligent heterogeneous sensor data fusion method is presented, and it is applied for the inertial measurement unit and velocimeter data. Finally, the flight results of the LAM are shown. Navigation sensors were able to provide valid measurement data during descent, and the thrusters and the main engine operated well as expected. Therefore, a successful soft lunar landing was achieved by the LAM.