Ultrafast Science

Announcing Winners of the 1st Women in Ultrafast Science Global Award

We are honored to announce 6 winners!

Click here to read more

Journal profile

The Open Access journal Ultrafast Science, published in association with Xi’an Institute of Optics and Precision Mechanics, is a platform for cutting-edge and emerging topics in ultrafast science with broad interest from scientific communities.

Editorial board

Ultrafast Science's editorial board is led by Qihuang Gong (Peking University) and Wei Zhao (Xi'an Institute of Optics and Precision Mechanics, CAS), and is comprised of experts who have made significant and well recognized contributions to the field of ultrafast science.

Special Issues

Submissions are open for Ultrafast Science's second special issue, Ultrafast Imaging.

Read the first special issue, Attosecond Science and Technology.

Latest Articles

More articles
Research Article

Attosecond Delays of High-Harmonic Emissions from Hydrogen Isotopes Measured by XUV Interferometer

High-harmonic spectroscopy can access structural and dynamical information on molecular systems encoded in the amplitude and phase of high-harmonic generation (HHG) signals. However, measurement of the harmonic phase is a daunting task. Here, we present a precise measurement of HHG phase difference between two isotopes of molecular hydrogen using the advanced extreme-ultraviolet (XUV) Gouy phase interferometer. The measured phase difference is about 200 mrad, corresponding to ~3 attoseconds () time delay which is nearly independent of harmonic order. The measurements agree very well with numerical calculations of a four-dimensional time-dependent Schödinger equation. Numerical simulations also reveal the effects of molecular orientation and intramolecular two-center interference on the measured phase difference. This technique opens a new avenue for measuring the phase of harmonic emission for different atoms and molecules. Together with isomeric or isotopic comparisons, it also enables the observation of subtle effects of molecular structures and nuclear motion on electron dynamics in strong laser fields.

Research Article

Direct Visualization of Deforming Atomic Wavefunction in Ultraintense High-Frequency Laser Pulses

Interaction of intense laser fields with atoms distorts the bound-state electron cloud. Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafast dynamics of various nonlinear phenomena of matter, but it is particularly challenging. Here, we show that the ultrafast response of the atomic electron cloud to the intense high-frequency laser pulses can be probed with the attosecond time-resolved photoelectron holography. In this method, an infrared laser pulse is employed to trigger tunneling ionization of the deforming atom. The shape of the deforming electron cloud is encoded in the hologram of the photoelectron momentum distribution. As a demonstration, by solving the time-dependent Schrödinger equation, we show that the adiabatic deforming of the bound-state electron cloud, as well as the nonadiabatic transition among the distorted states, is successfully tracked with attosecond resolution. Our work films the formation process of the metastable Kramers-Henneberger states in the intense high-frequency laser pulses. This establishes a novel approach for time-resolved imaging of the ultrafast bound-state electron processes in intense laser fields.

Research Article

Exploring Femtosecond Laser Ablation by Snapshot Ultrafast Imaging and Molecular Dynamics Simulation

Femtosecond laser ablation (FLA) has been playing a prominent role in precision fabrication of material because of its circumvention of thermal effect and extremely high spatial resolution. Molecular dynamics modeling, as a powerful tool to study the mechanism of femtosecond laser ablation, still lacks the connection between its simulation results and experimental observations at present. Here we combine a single-shot chirped spectral mapping ultrafast photography (CSMUP) technique in experiment and a three-dimensional two-temperature model-based molecular dynamics (3D TTM-MD) method in theory to jointly investigate the FLA process of bulky gold. Our experimental and simulated results show quite high consistency in time-resolved morphologic dynamics. According to the highly accurate simulations, the FLA process of gold at the high laser fluence is dominated by the phase explosion, which shows drastic vaporized cluster eruption and pressure dynamics, while the FLA process at the low laser fluence mainly results from the photomechanical spallation, which shows moderate temperature and pressure dynamics. This study reveals the ultrafast dynamics of gold with different ablation schemes, which has a guiding significance for the applications of FLA on various kinds of materials.

Research Article

Anti-Correlated Plasma and THz Pulse Generation during Two-Color Laser Filamentation in Air

The THz generation efficiency and the plasma density generated by a filament in air have been found anti-correlated when pumped by two-color laser field. The plasma density near zero delay of two laser pulses has a minimum value, which is opposite to the trend of THz generation efficiency and contradicts common sense. The lower plasma density cannot be explained by the static tunneling model according to the conventional photocurrent model, but it might be attributed to the electron trapping by the excited states of nitrogen molecule. The present work also clarifies the dominant role of the drifting velocity accelerated by the two-color laser field during the THz pulse generation process. The results promote our understanding on the optimization of the THz generation efficiency by the two-color laser filamentation.

Research Article

Air-Laser-Based Standoff Coherent Raman Spectrometer

Among currently available optical spectroscopic methods, Raman spectroscopy has versatile application to investigation of dynamical processes of molecules leading to chemical changes in the gas and liquid phases. However, it is still a challenge to realize an ideal standoff coherent Raman spectrometer with which both high temporal resolution and high-frequency resolution can be achieved, so that one can remotely probe chemical species in real time with high temporal resolution while monitoring the populations in their respective rovibronic levels in the frequency domain with sufficiently high spectral resolution. In the present study, we construct an air-laser-based Raman spectrometer, in which near-infrared femtosecond (fs) laser pulses at 800 nm and cavity-free picosecond N2+ air-laser pulses at 391 nm generated by the filamentation induced by the fs laser pulses are simultaneously used, enabling us to generate a hybrid ps/fs laser source at a desired standoff position for standoff surveillance of chemical and biochemical species. With this prototype Raman spectrometer, we demonstrate that the temporal evolution of the electronic, vibrational, and rotational states of N2+ and the coupling processes of the rovibrational wave packet of N2 molecules can be probed.

Research Article

Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons

Chirp-free solitons have been mainly achieved with anomalous-dispersion fiber lasers by the balance of dispersive and nonlinear effects, and the single-pulse energy is constrained within a relatively small range. Here, we report a class of chirp-free pulse in normal-dispersion erbium-doped fiber lasers, termed birefringence-managed soliton, in which the birefringence-related phase-matching effect dominates the soliton evolution. Controllable harmonic mode locking from 5 order to 85 order is obtained at the same pump level of ~10 mW with soliton energy fully tunable beyond ten times, which indicates a new birefringence-related soliton energy law, which fundamentally differs from the conventional soliton energy theorem. The unique transformation behavior between birefringence-managed solitons and dissipative solitons is directly visualized via the single-shot spectroscopy. The results demonstrate a novel approach of engineering fiber birefringence to create energy-tunable chirp-free solitons in normal-dispersion regime and open new research directions in fields of optical solitons, ultrafast lasers, and their applications.