Ultrafast Science

Announcing Winners of the 1st Women in Ultrafast Science Global Award

We are honored to announce 6 winners!

Click here to read more

Journal profile

The Open Access journal Ultrafast Science, published in association with Xi’an Institute of Optics and Precision Mechanics, is a platform for cutting-edge and emerging topics in ultrafast science with broad interest from scientific communities.

Editorial board

Ultrafast Science's editorial board is led by Qihuang Gong (Peking University) and Wei Zhao (Xi'an Institute of Optics and Precision Mechanics, CAS), and is comprised of experts who have made significant and well recognized contributions to the field of ultrafast science.

Announcements and news

Read Ultrafast Science's first special issue, Attosecond Science and Technology.

Latest Articles

More articles
Research Article

Anti-Correlated Plasma and THz Pulse Generation during Two-Color Laser Filamentation in Air

The THz generation efficiency and the plasma density generated by a filament in air have been found anti-correlated when pumped by two-color laser field. The plasma density near zero delay of two laser pulses has a minimum value, which is opposite to the trend of THz generation efficiency and contradicts common sense. The lower plasma density cannot be explained by the static tunneling model according to the conventional photocurrent model, but it might be attributed to the electron trapping by the excited states of nitrogen molecule. The present work also clarifies the dominant role of the drifting velocity accelerated by the two-color laser field during the THz pulse generation process. The results promote our understanding on the optimization of the THz generation efficiency by the two-color laser filamentation.

Research Article

Air-Laser-Based Standoff Coherent Raman Spectrometer

Among currently available optical spectroscopic methods, Raman spectroscopy has versatile application to investigation of dynamical processes of molecules leading to chemical changes in the gas and liquid phases. However, it is still a challenge to realize an ideal standoff coherent Raman spectrometer with which both high temporal resolution and high-frequency resolution can be achieved, so that one can remotely probe chemical species in real time with high temporal resolution while monitoring the populations in their respective rovibronic levels in the frequency domain with sufficiently high spectral resolution. In the present study, we construct an air-laser-based Raman spectrometer, in which near-infrared femtosecond (fs) laser pulses at 800 nm and cavity-free picosecond N2+ air-laser pulses at 391 nm generated by the filamentation induced by the fs laser pulses are simultaneously used, enabling us to generate a hybrid ps/fs laser source at a desired standoff position for standoff surveillance of chemical and biochemical species. With this prototype Raman spectrometer, we demonstrate that the temporal evolution of the electronic, vibrational, and rotational states of N2+ and the coupling processes of the rovibrational wave packet of N2 molecules can be probed.

Research Article

Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons

Chirp-free solitons have been mainly achieved with anomalous-dispersion fiber lasers by the balance of dispersive and nonlinear effects, and the single-pulse energy is constrained within a relatively small range. Here, we report a class of chirp-free pulse in normal-dispersion erbium-doped fiber lasers, termed birefringence-managed soliton, in which the birefringence-related phase-matching effect dominates the soliton evolution. Controllable harmonic mode locking from 5 order to 85 order is obtained at the same pump level of ~10 mW with soliton energy fully tunable beyond ten times, which indicates a new birefringence-related soliton energy law, which fundamentally differs from the conventional soliton energy theorem. The unique transformation behavior between birefringence-managed solitons and dissipative solitons is directly visualized via the single-shot spectroscopy. The results demonstrate a novel approach of engineering fiber birefringence to create energy-tunable chirp-free solitons in normal-dispersion regime and open new research directions in fields of optical solitons, ultrafast lasers, and their applications.

Research Article

Generating Isolated Attosecond X-Ray Pulses by Wavefront Control in a Seeded Free-Electron Laser

We proposed a simple method based on the seeded free-electron laser (FEL) to generate fully coherent X-ray pulses with durations at dozens of attosecond level. The echo-enabled harmonic generation technique is utilized to generate the fully coherent laser pulse covering the water-window range. A wavefront rotation laser is adopted as the seed to tailor the longitudinal contour of the radiation pulse. Due to the sensitivity of seeded FEL to external lasers, this method can effectively inhibit the bunching of the adjacent regions while preserving an isolated bunching in the middle. Sending such an electron beam into a short undulator, simulation results show that ultrashort X-ray pulses with peak power of GW level and pulse duration as short as 86 attoseconds can be generated. The proposed scheme can make it possible to study the electronic dynamic of the valence electrons of which the time scale is about 100 attoseconds and may open up a new frontier of ultrafast science.

Research Article

High-Harmonic Generation and Correlated Electron Emission from Relativistic Plasma Mirrors at 1 kHz Repetition Rate

We report evidence for the first generation of XUV spectra from relativistic surface high-harmonic generation (SHHG) on plasma mirrors at a kilohertz repetition rate, emitted simultaneously with energetic electrons. SHHG spectra and electron angular distributions are measured as a function of the experimentally controlled plasma density gradient scale length for three increasingly short and intense driving pulses: 24 fs and , 8 fs and , and finally 4 fs and , where is the peak vector potential normalized by with the elementary charge , the electron rest mass , and the vacuum light velocity . For all driver pulses, we observe correlated relativistic SHHG and electron emission in the range , with an optimum gradient scale length of . This universal optimal -range is rationalized by deriving a direct intensity-independent link between the scale length and an effective similarity parameter for relativistic laser-plasma interactions.

Research Article

Attosecond Optical and Ramsey-Type Interferometry by Postgeneration Splitting of Harmonic Pulse

Time domain Ramsey-type interferometry is useful for investigating spectroscopic information of quantum states in atoms and molecules. The energy range of the quantum states to be observed with this scheme has now reached more than 20 eV by resolving the interference fringes with a period of a few hundred attoseconds. This attosecond Ramsey-type interferometry requires the irradiation of a coherent pair of extreme ultraviolet (XUV) light pulses, while all the methods used to deliver the coherent XUV pulse pair until now have relied on the division of the source of an XUV pulse in two before the generation. In this paper, we report on a novel technique to perform attosecond Ramsey-type interferometry by splitting an XUV high-order harmonic (HH) pulse of a sub-20 fs laser pulse after its generation. By virtue of the postgeneration splitting of the HH pulse, we demonstrated that the optical interference emerging at the complete temporal overlap of the HH pulse pair seamlessly continued to the Ramsey-type electronic interference in a helium atom. This technique is applicable for studying the femtosecond dephasing dynamics of electronic wavepackets and exploring the ultrafast evolution of a cationic system entangled with an ionized electron with sub-20 fs resolution.