Apply Today!

Women in Ultrafast Science Global Award 2022

In recognition of the inspiring contributions made by women in science, Ultrafast Science has established the Women in Ultrafast Science Global Award.

Click here to learn more

Journal profile

The Open Access journal Ultrafast Science, published in association with Xi’an Institute of Optics and Precision Mechanics, is a platform for cutting-edge and emerging topics in ultrafast science with broad interest from scientific communities.

Editorial board

Ultrafast Science's editorial board is led by Qihuang Gong (Peking University) and Wei Zhao (Xi'an Institute of Optics and Precision Mechanics, CAS), and is comprised of experts who have made significant and well recognized contributions to the field of ultrafast science.

Announcements and news

Submit Your Application for the Women in Ultrafast Science Global Award 2022 (Deadline: May 30, 2022)

 

Ultrafast Science is now accepting submissions for its first special issue: Attosecond Science and Technology

Latest Articles

More articles
Research Article

Low-Energy Protons in Strong-Field Dissociation of H2+ via Dipole-Transitions at Large Bond Lengths

More than ten years ago, the observation of the low-energy structure in the photoelectron energy spectrum, regarded as an “ionization surprise,” has overthrown our understanding of strong-field physics. However, the similar low-energy nuclear fragment generation from dissociating molecules upon the photon energy absorption, one of the well-observed phenomena in light-molecule interaction, still lacks an unambiguous mechanism and remains mysterious. Here, we introduce a time-energy-resolved manner using a multicycle near-infrared femtosecond laser pulse to identify the physical origin of the light-induced ultrafast dynamics of molecules. By simultaneously measuring the bond-stretching times and photon numbers involved in the dissociation of H2+ driven by a polarization-skewed laser pulse, we reveal that the low-energy protons (below 0.7 eV) are produced via dipole-transitions at large bond lengths. The observed low-energy protons originate from strong-field dissociation of high vibrational states rather than the low ones of H2+ cation, which is distinct from the well-accepted bond-softening picture. Further numerical simulation of the time-dependent Schrödinger equation unveils that the electronic states are periodically distorted by the strong laser field, and the energy gap between the field-dressed transient electronic states may favor the one- or three-photon transitions at the internuclear distance larger than 5 a.u. The time-dependent scenario and our time-energy-resolved approach presented here can be extended to other molecules to understand the complex ultrafast dynamics.

Research Article

High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy

Remote or standoff detection of greenhouse gases, air pollutants, and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However, the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein, we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump, producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air, and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%, respectively. The ingenious designs, especially the optimization of pump-seed delay and the choice of perpendicular polarization, ensure a high detection sensitivity and signal stability. Moreover, it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.

Research Article

Factor 30 Pulse Compression by Hybrid Multipass Multiplate Spectral Broadening

As ultrafast laser technology advances towards ever higher peak and average powers, generating sub-50 fs pulses from laser architectures that exhibit best power-scaling capabilities remains a major challenge. Here, we present a very compact and highly robust method to compress 1.24 ps pulses to 39 fs by means of only a single spectral broadening stage which neither requires vacuum parts nor custom-made optics. Our approach is based on the hybridization of the multiplate continuum and the multipass cell spectral broadening techniques. Their combination leads to significantly higher spectral broadening factors in bulk material than what has been reported from either method alone. Moreover, our approach efficiently suppresses adverse features of single-pass bulk spectral broadening. We use a burst-mode Yb:YAG laser emitting pulses with 80 MW peak power that are enhanced to more than 1 GW after postcompression. With only 0.19% rms pulse-to-pulse energy fluctuations, the technique exhibits excellent stability. Furthermore, we have measured state-of-the-art spectral-spatial homogeneity and good beam quality of up to a spectral broadening factor of 30. Due to the method’s simplicity, compactness, and scalability, it is highly attractive for turning a picosecond laser into an ultrafast light source that generates pulses of only a few tens of femtoseconds duration.

Research Article

Bessel Terahertz Pulses from Superluminal Laser Plasma Filaments

Terahertz radiation with a Bessel beam profile is demonstrated experimentally from a two-color laser filament in air, which is induced by tailored femtosecond laser pulses with an axicon. The temporal and spatial distributions of Bessel rings of the terahertz radiation are retrieved after being collected in the far field. A theoretical model is proposed, which suggests that such Bessel terahertz pulses are produced due to the combined effects of the inhomogeneous superluminal filament structure and the phase change of the two-color laser components inside the plasma channel. These two effects lead to wavefront crossover and constructive/destructive interference of terahertz radiation from different plasma sources along the laser filament, respectively. Compared with other methods, our technique can support the generation of Bessel pulses with broad spectral bandwidth. Such Bessel pulses can propagate to the far field without significant spatial spreading, which shall provide new opportunities for terahertz applications.

Research Article

High-Flux 100 kHz Attosecond Pulse Source Driven by a High-Average Power Annular Laser Beam

High-repetition rate attosecond pulse sources are indispensable tools for time-resolved studies of electron dynamics, such as coincidence spectroscopy and experiments with high demands on statistics or signal-to-noise ratio, especially in the case of solid and big molecule samples in chemistry and biology. Although with the high-repetition rate lasers, such attosecond pulses in a pump-probe configuration are possible to achieve, until now, only a few such light sources have been demonstrated. Here, by shaping the driving laser to an annular beam, a 100 kHz attosecond pulse train (APT) is reported with the highest energy so far (51 pJ/shot) on target (269 pJ at generation) among the high-repetition rate systems (>10 kHz) in which the attosecond pulses were temporally characterized. The on-target pulse energy is maximized by reducing the losses from the reflections and filtering of the high harmonics, and an unprecedented 19% transmission rate from the generation point to the target position is achieved. At the same time, the probe beam is also annular and low loss of this beam is reached by using another holey mirror to combine with the APT. The advantages of using an annular beam to generate attosecond pulses with a high-average power laser are demonstrated experimentally and theoretically. The effect of nonlinear propagation in the generation medium on the annular-beam generation concept is also analyzed in detail.

Review Article

Theoretical Insights into Ultrafast Dynamics in Quantum Materials

The last few decades have witnessed the extraordinary advances in theoretical and experimental tools, which have enabled the manipulation and monitoring of ultrafast dynamics with high precisions. For modeling dynamical responses beyond the perturbative regime, computational methods based on time-dependent density functional theory (TDDFT) are the optimal choices. Here, we introduce TDAP (time-dependent ab initio propagation), a first-principle approach that is aimed at providing robust dynamic simulations of light-induced, highly nonlinear phenomena by real-time calculation of combined photonic, electronic, and ionic quantum mechanical effects within a TDDFT framework. We review the implementation of real-time TDDFT with numerical atomic orbital formalisms, which has enabled high-accuracy, large-scale simulations with moderate computational cost. The newly added features, i.e., the time-dependent electric field gauges and controllable ionic motion make the method especially suitable for investigating ultrafast electron-nuclear dynamics in complex periodic and semiperiodic systems. An overview of the capabilities of this first-principle method is provided by showcasing several representative applications including high-harmonic generation, tunable phase transitions, and new emergent states of matter. The method demonstrates a great potential in obtaining a predictive and comprehensive understanding of quantum dynamics and interactions in a wide range of materials at the atomic and attosecond space-time scale.