1st International Conference on UltrafastX 2021

Register today for this forum for discussing the latest developments of ultrafast science, technologies, and applications.

Click here to learn more

Journal profile

The Open Access journal Ultrafast Science, published in association with Xi’an Institute of Optics and Precision Mechanics, is a platform for cutting-edge and emerging topics in ultrafast science with broad interest from scientific communities.

Editorial board

Ultrafast Science's editorial board is led by Qihuang Gong (Peking University) and Wei Zhao (Xi'an Institute of Optics and Precision Mechanics, CAS), and is comprised of experts who have made significant and well recognized contributions to the field of ultrafast science.

Announcements and news

Ultrafast Science is now accepting submissions for its first special issue: Attosecond Science and Technology

 

Become a Youth Editorial Board Member for Ultrafast Science! Visit our News page to learn more.

Latest Articles

More articles
Review Article

Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale

As a noncontact strategy with flexible tools and high efficiency, laser precision engineering is a significant advanced processing way for high-quality micro-/nanostructure fabrication, especially to achieve novel functional photoelectric structures and devices. For the microscale creation, several femtosecond laser fabrication methods, including multiphoton absorption, laser-induced plasma-assisted ablation, and incubation effect have been developed. Meanwhile, the femtosecond laser can be combined with microlens arrays and interference lithography techniques to achieve the structures in submicron scales. Down to nanoscale feature sizes, advanced processing strategies, such as near-field scanning optical microscope, atomic force microscope, and microsphere, are applied in femtosecond laser processing and the minimum nanostructure creation has been pushed down to ~25 nm due to near-field effect. The most fascinating femtosecond laser precision engineering is the possibility of large-area, high-throughput, and far-field nanofabrication. In combination with special strategies, including dual femtosecond laser beam irradiation, ~15 nm nanostructuring can be achieved directly on silicon surfaces in far field and in ambient air. The challenges and perspectives in the femtosecond laser precision engineering are also discussed.

Research Article

Neighboring Atom Collisions in Solid-State High Harmonic Generation

High harmonic generation (HHG) from solids shows great application prospects in compact short-wavelength light sources and as a tool for imaging the dynamics in crystals with subnanometer spatial and attosecond temporal resolution. However, the underlying collision dynamics behind solid HHG is still intensively debated and no direct mapping relationship between the collision dynamics with band structure has been built. Here, we show that the electron and its associated hole can be elastically scattered by neighboring atoms when their wavelength approaches the atomic size. We reveal that the elastic scattering of electron/hole from neighboring atoms can dramatically influence the electron recombination with its left-behind hole, which turns out to be the fundamental reason for the anisotropic interband HHG observed recently in bulk crystals. Our findings link the electron/hole backward scattering with Van Hove singularities and forward scattering with critical lines in the band structure and thus build a clear mapping between the band structure and the harmonic spectrum. Our work provides a unifying picture for several seemingly unrelated experimental observations and theoretical predictions, including the anisotropic harmonic emission in MgO, the atomic-like recollision mechanism of solid HHG, and the delocalization of HHG in ZnO. This strongly improved understanding will pave the way for controlling the solid-state HHG and visualizing the structure-dependent electron dynamics in solids.

Research Article

Focusing Properties of High-Order Harmonics

Many applications of the extreme ultraviolet (XUV) radiation obtained by high-order harmonic generation (HHG) in gases require a small focus area in order to enable attosecond pulses to reach a high intensity. Here, high-order harmonics generated in Ar with a multiterawatt laser system in a loose focusing geometry are focused to a few micrometers using two toroidal mirrors in a Wolter configuration with a high demagnification factor. Using a knife-edge measurement technique, we determine the position and size of the XUV foci as a function of harmonic order. We show that the focus properties vary with harmonic order and the generation conditions. Simulations, based on a classical description of the harmonic dipole phase and assuming that the individual harmonics can be described as Gaussian beams, reproduce the experimental behavior. We discuss how the generation geometry affects the intensity and duration of the focused attosecond pulses.

Research Article

Polarization Flipping of Even-Order Harmonics in Monolayer Transition-Metal Dichalcogenides

We present a systematic study of the crystal-orientation dependence of high-harmonic generation in monolayer transition-metal dichalcogenides, WS2 and MoSe2, subjected to intense linearly polarized midinfrared laser fields. The measured spectra consist of both odd- and even-order harmonics, with a high-energy cutoff extending beyond the 15th order for a laser-field strength around ~1 V/nm. In WS2, we find that the polarization direction of the odd-order harmonics smoothly follows that of the laser field irrespective of the crystal orientation, whereas the direction of the even-order harmonics is fixed by the crystal mirror planes. Furthermore, the polarization of the even-order harmonics shows a flip in the course of crystal rotation when the laser field lies between two of the crystal mirror planes. By numerically solving the semiconductor Bloch equations for a gapped-graphene model, we qualitatively reproduce these experimental features and find the polarization flipping to be associated with a significant contribution from interband polarization. In contrast, high-harmonic signals from MoSe2 exhibit deviations from the laser-field following of odd-order harmonics and crystal-mirror-plane following of even-order harmonics. We attribute these differences to the competing roles of the intraband and interband contributions, including the deflection of the electron-hole trajectories by nonparabolic crystal bands.

Review Article

A Custom-Tailored Multi-TW Optical Electric Field for Gigawatt Soft-X-Ray Isolated Attosecond Pulses

Since the first isolated attosecond pulse was demonstrated through high-order harmonics generation (HHG) in 2001, researchers’ interest in the ultrashort time region has expanded. However, one realizes a limitation for related research such as attosecond spectroscopy. The bottleneck is concluded to be the lack of a high-peak-power isolated attosecond pulse source. Therefore, currently, generating an intense attosecond pulse would be one of the highest priority goals. In this paper, we review our recent work of a TW-class parallel three-channel waveform synthesizer for generating a gigawatt-scale soft-X-ray isolated attosecond pulse (IAP) using HHG. By employing several stabilization methods, we have achieved a stable 50 mJ three-channel optical-waveform synthesizer with a peak power at the multi-TW level. This optical-waveform synthesizer is capable of creating a stable intense optical field for generating an intense continuum harmonic beam thanks to the successful stabilization of all the parameters. Furthermore, the precision control of shot-to-shot reproducible synthesized waveforms is achieved. Through the HHG process employing a loose-focusing geometry, an intense shot-to-shot stable supercontinuum (50–70 eV) is generated in an argon gas cell. This continuum spectrum supports an IAP with a transform-limited duration of 170 as and a submicrojoule pulse energy, which allows the generation of a GW-scale IAP. Another supercontinuum in the soft-X-ray region with higher photon energy of approximately 100–130 eV is also generated in neon gas from the synthesizer. The transform-limited pulse duration is 106 as. Thus, the enhancement of HHG output through optimized waveform synthesis is experimentally proved.

Research Article

THz-Enhanced DC Ultrafast Electron Diffractometer

Terahertz- (THz-) based electron manipulation has recently been shown to hold tremendous promise as a technology for manipulating and driving the next generation of compact ultrafast electron sources. Here, we demonstrate an ultrafast electron diffractometer with THz-driven pulse compression. The electron bunches from a conventional DC gun are compressed by a factor of 10 and reach a duration of ~180 fs (FWHM) with 10,000 electrons/pulse at a 1 kHz repetition rate. The resulting ultrafast electron source is used in a proof-of-principle experiment to probe the photoinduced dynamics of single-crystal silicon. The THz-compressed electron beams produce high-quality diffraction patterns and enable the observation of the ultrafast structural dynamics with improved time resolution. These results validate the maturity of THz-driven ultrafast electron sources for use in precision applications.