Ultrafast Science / 2022 / Article / Tab 1

Review Article

Nature-Inspired Superwettability Achieved by Femtosecond Lasers

Table 1

Crucial parameters for fabricating superwetting surfaces introduced in this review.

Section in this reviewSamplesParameters of laser systemProcessing parametersReferences
MaterialWettabilityPulse duration/widthCentral wavelengthRepetition rateLaser powerScanning speedInterval of scanning lines

3.1Platinum, goldSuperhydrophilicity65 fs800 nm1 kHz1.1 mJ/pulse100 μm[96]
3.1SiliconSuperhydrophilicity65 fs800 nm1 kHz8.5 J/cm21 mm/s100 μm[97]
3.1GlassSuperhydrophilicity65 fs800 nm1 kHz1.1 mJ/pulse100 μm[98]
3.2SiliconSuperhydrophobicity100 fs800 nm1 kHz0.9 J/cm2[99]
3.2SiliconSuperhydrophobicity180 fs800 nm1 kHz0.37~2.47 J/cm2[100]
3.2SiliconSuperhydrophobicity30 fs800 nm1 kHz15 mW2 mm/s2 μm[101]
3.2PDMSSuperhydrophobicity50 fs800 nm1 kHz30 mW4 mm/s10 μm[102]
3.2PTFESuperhydrophobicity, superoleophilicity50 fs800 nm1 kHz20 mW5 mm/s5 μm[103]
3.2SMPSuperhydrophobicity50 fs800 nm1 kHz10 mW, 30 mW6 mm/s, 4 mm/s6 μm, 2 μm[104]
3.2Different steel and titanium alloysSuperhydrophobicity150 fs800 nm1 kHz0.78, 2.83, 5.16 J/cm20.25 mm/sSpot overlap = 50%, spot size = 30 μm[105]
3.2Stainless steelSuperhydrophobicity130 fs800 nm1 kHz2.4 J/cm21 mm/s30 μm[106]
3.2Platinum, titanium, brassSuperhydrophobicity65 fs800 nm1 kHz9.8 J/cm2, 7.6 J/cm2, 3.9 J/cm2100 μm[107]
3.2ZincSuperhydrophobicity50 fs800 nm1 kHz15 mW2 mm/s2 μm[108]
3.2K9 glassSuperhydrophobicity130 fs800 nm1 kHz100~200 mW[109]
3.2Soda-lime glassSuperhydrophobicity183 fs786 nm1 kHz21 mW5 mm/s10 μm[110]
3.2Silica glassSuperhydrophobicity800 fs1030 nm200 kHz20-100 μJ/pulse[111]
4.1PhotoresistSuperamphiphobicity100 fs780 nm80 MHz50 mW30 mm/s[112]
4.1CopperSuperamphiphobicity800 fs1030 nm200 kHz30 μJ/pulse (2.65 J/cm2)500 mm/s40 μm[113]
4.2SiliconUnderwater superoleophobicity50 fs800 nm1 kHz20 mW2 mm/s2 μm[114]
4.2SiliconUnderwater superoleophobicity104 fs800 nm1 kHz60 mW1 mm/s50 μm[115]
4.2TitaniumUnderwater superoleophobicity50 fs800 nm1 kHz15 mW2 mm/s2 μm[95]
4.2Aluminum, copper, iron, molybdenum, stainless steelUnderwater superoleophobicity50 fs800 nm1 kHz10 mW2 mm/s2 μm[116]
4.2NickelUnderwater superoleophobicity104 fs800 nm1 kHz190 mW1 mm/s50 μm[117]
4.2Silica glassUnderwater superoleophobicity50 fs800 nm1 kHz20 mW4 mm/s4 μm[118]
4.2Glass slideUnderwater superoleophobicity50 fs800 nm1 kHz10 mW, 15 mW2 mm/s2 μm[119, 120]
4.2PDMSUnderwater superoleophobicity50 fs800 nm1 kHz40 mW5 mm/s5 μm[89]
5.1Silicon, aluminumUnderwater superaerophobicity50 fs800 nm1 kHz15 mW, 30 mW2 mm/s, 5 mm/s2 μm, 5 μm[121]
5.1AluminumUnderwater superaerophobicity67 fs800 nm1 kHz200 mW2 mm/s40 μm[122]
5.1Stainless steelUnderwater superaerophobicity67 fs800 nm1 kHz500 mW1 mm/s80 μm[123]
5.1PDMSUnderwater superaerophobicity50 fs800 nm1 kHz40 mW, 50 mW5 mm/s, 8 mm/s5 μm, 8 μm[89, 124]
5.2PDMSUnderwater superaerophilicity50 fs800 nm1 kHz30 mW4 mm/s4 μm[121]
5.2PTFEUnderwater superaerophilicity50 fs800 nm1 kHz30 mW4 mm/s, 5 mm/s4 μm, 5 μm[121, 125]
5.2AluminumUnderwater superaerophilicity67 fs800 nm1 kHz200 mW2 mm/s40 μm[122]
5.2Stainless steelUnderwater superaerophilicity67 fs800 nm1 kHz500 mW1 mm/s80 μm[123]
5.2SiliconUnderwater superaerophilicity67 fs800 nm1 kHz500 mW1 mm/s100 μm[126]
6.2PA6Super-slippery property50 fs800 nm1 kHz25 mW4 mm/s4 μm[127]
6.2Epoxy polymerSuper-slippery property50 fs800 nm1 kHz20 mW8 mm/s8 μm[128]
6.2PETSuper-slippery property50 fs800 nm1 kHz30 mW4 mm/s4 μm[129]
6.2NiTi alloySuper-slippery property400 fs1030 nm2.5 MHz4.3 μJ/pulse12 mm/s6 μm[130]
6.2Stainless steelSuper-slippery property50 fs800 nm1 kHz80 mW2 mm/s2 μm[131]
6.2Aluminum alloySuper-slippery property104 fs800 nm1 kHz300 mW1 mm/s100 μm[132]
7.1Stainless steelUnderwater superpolymphobicity67 fs800 nm1 kHz500 mW2.5 mm/s80 μm[90]
7.1Silicon, glass, aluminum, copperUnderwater superpolymphobicity67 fs800 nm1 kHz500 mW2.5 mm/s60 μm[133]
7.2Silicon, PDMSSupermetalphobicity50 fs800 nm1 kHz20 mW2 mm/s, 4 mm/s2 μm, 4 μm[134]
7.2PDMSSupermetalphobicity50 fs800 nm1 kHz20 mW8 mm/s8 μm[135]